Cargando…
Dimensionality reduction by UMAP for visualizing and aiding in classification of imaging flow cytometry data
Recent advances in imaging flow cytometry (IFC) have revolutionized high-throughput multiparameter analyses at single-cell resolution. Although enabling the discovery of population heterogeneities and the detection of rare events, IFC generates hyperdimensional datasets that demand innovative analyt...
Autores principales: | Stolarek, Ireneusz, Samelak-Czajka, Anna, Figlerowicz, Marek, Jackowiak, Paulina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526149/ https://www.ncbi.nlm.nih.gov/pubmed/36193047 http://dx.doi.org/10.1016/j.isci.2022.105142 |
Ejemplares similares
-
Dimensionality reduction by UMAP to visualize physical and genetic interactions
por: Dorrity, Michael W., et al.
Publicado: (2020) -
layerUMAP: A tool for visualizing and understanding deep learning models in biological sequence classification using UMAP
por: Jing, Runyu, et al.
Publicado: (2022) -
Human AGEs: an interactive spatio-temporal visualization and database of human archeogenomics
por: Ciecierski, Lukasz, et al.
Publicado: (2023) -
How to explore what is hidden? A review of techniques for vascular tissue expression profile analysis
por: Kułak, Karolina, et al.
Publicado: (2023) -
BRAQUE: Bayesian Reduction for Amplified Quantization in UMAP Embedding
por: Dall’Olio, Lorenzo, et al.
Publicado: (2023)