Cargando…
Combining egoformative and alloformative cues in a novel tabletop navigation task
Previous work has shown how different interfaces (i.e., route navigation, maps, or a combination of the two) influence spatial knowledge and recollection. To test for the existence of intermediate representations along an egocentric-to-allocentric continuum, we developed a novel task, tabletop navig...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526213/ https://www.ncbi.nlm.nih.gov/pubmed/36181560 http://dx.doi.org/10.1007/s00426-022-01739-y |
Sumario: | Previous work has shown how different interfaces (i.e., route navigation, maps, or a combination of the two) influence spatial knowledge and recollection. To test for the existence of intermediate representations along an egocentric-to-allocentric continuum, we developed a novel task, tabletop navigation, to provide a mixture of cues that inform the emergence of egocentric and allocentric representations or strategies. In this novel tabletop task, participants navigated a remote-controlled avatar through a tabletop scale model of the virtual city. Participants learned virtual cities from either navigating routes, studying maps, or our new tabletop navigation task. We interleaved these learning tasks with either an in situ pointing task (the scene- and orientation-dependent pointing [SOP] task) or imagined judgements of relative direction (JRD) pointing. In Experiment 1, performance on each memory task was similar across learning tasks and performance on the route and map learning tasks correlated with more precise spatial recall on both the JRD and SOP tasks. Tabletop learning performance correlated with SOP performance only, suggesting a reliance on egocentric strategies, although increased utilization of the affordances of the tabletop task were related to JRD performance. In Experiment 2, using a modified criterion map learning task, participants who learned using maps provided more precise responses on the JRD compared to route or tabletop learning. Together, these findings provide mixed evidence for both optimization and egocentric predominance after learning from the novel tabletop navigation task. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00426-022-01739-y. |
---|