Cargando…
Comparative analysis of mitochondrial genomes of maize CMS-S subtypes provides new insights into male sterility stability
BACKGROUND: Cytoplasmic male sterility (CMS) is a trait of economic importance in the production of hybrid seeds. In CMS-S maize, exerted anthers appear frequently in florets of field-grown female populations where only complete male-sterile plants were expected. It has been reported that these reve...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526321/ https://www.ncbi.nlm.nih.gov/pubmed/36180833 http://dx.doi.org/10.1186/s12870-022-03849-6 |
Sumario: | BACKGROUND: Cytoplasmic male sterility (CMS) is a trait of economic importance in the production of hybrid seeds. In CMS-S maize, exerted anthers appear frequently in florets of field-grown female populations where only complete male-sterile plants were expected. It has been reported that these reversions are associated with the loss of sterility-conferring regions or other rearrangements in the mitochondrial genome. However, the relationship between mitochondrial function and sterility stability is largely unknown. RESULTS: In this study, we determined the ratio of plants carrying exerted anthers in the population of two CMS-S subtypes. The subtype with a high ratio of exerted anthers was designated as CMS-Sa, and the other with low ratio was designated as CMS-Sb. Through next-generation sequencing, we assembled and compared mitochondrial genomes of two CMS-S subtypes. Phylogenetic analyses revealed strong similarities between the two mitochondrial genomes. The sterility-associated regions, S plasmids, and terminal inverted repeats (TIRs) were intact in both genomes. The two subtypes maintained high transcript levels of the sterility gene orf355 in anther tissue. Most of the functional genes/proteins were identical at the nucleotide sequence and amino acid sequence levels in the two subtypes, except for NADH dehydrogenase subunit 1 (nad1). In the mitochondrial genome of CMS-Sb, a 3.3-kilobase sequence containing nad1-exon1 was absent from the second copy of the 17-kb repeat region. Consequently, we detected two copies of nad1-exon1 in CMS-Sa, but only one copy in CMS-Sb. During pollen development, nad1 transcription and mitochondrial biogenesis were induced in anthers of CMS-Sa, but not in those of CMS-Sb. We suggest that the impaired mitochondrial function in the anthers of CMS-Sb is associated with its more stable sterility. CONCLUSIONS: Comprehensive analyses revealed diversity in terms of the copy number of the mitochondrial gene nad1-exon1 between two subtypes of CMS-S maize. This difference in copy number affected the transcript levels of nad1 and mitochondrial biogenesis in anther tissue, and affected the reversion rate of CMS-S maize. The results of this study suggest the involvement of mitochondrial robustness in modulation of sterility stability in CMS-S maize. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-022-03849-6. |
---|