Cargando…
Feasibility of Automated Segmentation of Pigmented Choroidal Lesions in OCT Data With Deep Learning
PURPOSE: To evaluate the feasibility of automated segmentation of pigmented choroidal lesions (PCLs) in optical coherence tomography (OCT) data and compare the performance of different deep neural networks. METHODS: Swept-source OCT image volumes were annotated pixel-wise for PCLs and background. Th...
Autores principales: | Valmaggia, Philippe, Friedli, Philipp, Hörmann, Beat, Kaiser, Pascal, Scholl, Hendrik P. N., Cattin, Philippe C., Sandkühler, Robin, Maloca, Peter M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526362/ https://www.ncbi.nlm.nih.gov/pubmed/36156729 http://dx.doi.org/10.1167/tvst.11.9.25 |
Ejemplares similares
-
Deep Learning for Diagnosing and Segmenting Choroidal Neovascularization in OCT Angiography in a Large Real-World Data Set
por: Wang, Jie, et al.
Publicado: (2023) -
Convolutional Neural Network–Based Automated Quality Assessment of OCT and OCT Angiography Image Maps in Individuals With Neurodegenerative Disease
por: Lee, Terry, et al.
Publicado: (2023) -
Segmentation-Free OCT-Volume-Based Deep Learning Model Improves Pointwise Visual Field Sensitivity Estimation
por: Chen, Zhiqi, et al.
Publicado: (2023) -
Application of Deep Learning for Automated Detection of Polypoidal Choroidal Vasculopathy in Spectral Domain Optical Coherence Tomography
por: Wongchaisuwat, Papis, et al.
Publicado: (2022) -
Demographics Prediction and Heatmap Generation From OCT Images of Anterior Segment of the Eye: A Vision Transformer Model Study
por: Lee, Yun Jeong, et al.
Publicado: (2022)