Cargando…

Synthetic evolution of herbicide resistance using a T7 RNAP–based random DNA base editor

Synthetic directed evolution via localized sequence diversification and the simultaneous application of selection pressure is a promising method for producing new, beneficial alleles that affect traits of interest in diverse species; however, this technique has rarely been applied in plants. Here, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Butt, Haroon, Ramirez, Jose Luis Moreno, Mahfouz, Magdy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Life Science Alliance LLC 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526444/
https://www.ncbi.nlm.nih.gov/pubmed/36171140
http://dx.doi.org/10.26508/lsa.202201538
Descripción
Sumario:Synthetic directed evolution via localized sequence diversification and the simultaneous application of selection pressure is a promising method for producing new, beneficial alleles that affect traits of interest in diverse species; however, this technique has rarely been applied in plants. Here, we designed, built, and tested a chimeric fusion of T7 RNA Polymerase (RNAP) and deaminase to enable the localized sequence diversification of a target sequence of interest. We tested our T7 RNAP–DNA base editor in Nicotiana benthamiana transient assays to target a transgene expressing GFP under the control of the T7 promoter and observed C-to-T conversions. We then targeted the T7 promoter-driven acetolactate synthase sequence that had been stably integrated in the rice genome and generated C-to-T and G-to-A transitions. We used herbicide treatment as selection pressure for the evolution of the acetolactate synthase sequence, resulting in the enrichment of herbicide-responsive residues. We then validated these herbicide-responsive regions in the transgenic rice plants. Thus, our system could be used for the continuous synthetic evolution of gene functions to produce variants with improved herbicide resistance.