Cargando…
lncRNA PCGEM1 Regulates the Progress of Colorectal Cancer through Targeting miR-129-5p/SOX4
Prostate cancer gene expression marker 1 (PCGEM1) has abnormal expression level in a variety of malignant tumor. However, the relationship between PCGEM1 and colorectal cancer is still unclear yet. This study is aimed at identifying the role of PCGEM1 in colorectal cancer. qRT-PCR was used to examin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526589/ https://www.ncbi.nlm.nih.gov/pubmed/36193492 http://dx.doi.org/10.1155/2022/2876170 |
Sumario: | Prostate cancer gene expression marker 1 (PCGEM1) has abnormal expression level in a variety of malignant tumor. However, the relationship between PCGEM1 and colorectal cancer is still unclear yet. This study is aimed at identifying the role of PCGEM1 in colorectal cancer. qRT-PCR was used to examine the expressions of the expression of lncRNA PCGEM1 and SOX4 in CRC tissues and cell lines. The biological functions of lncRNA PCGEM1 and SOX4 were examined by CCK-8 assay, Transwell assay, immunohistochemistry, western blotting, RNA interference, and gene overexpression techniques. Bioinformatics analysis was used to find the potential downstream molecule of PCGEM1 and miR-129-5p. The relationship between PCGEM1, miR-129-5p, and SOX4 was assessed by dual luciferase activity assay. We found that PCGEM1 is overexpressed in colorectal cancer cells and tissues, while miR-129-5p is underexpressed. SOX4 is overexpressed in colorectal cancer cells and tissues. Functionally, PCGEM1 silencing can significantly inhibit the proliferation, invasion, and migration of colorectal cancer cells. Mechanically, PCGEM1 acted as a sponge for miR-129-5p and absorbed its expression, and miR-129-5p was found to target SOX4, constructing the axis of PCGEM1/miR-129-5p/SOX4 in colorectal cancer. In conclusion, PCGEM1 mediates the proliferation, invasion, and migration of colorectal cancer cells by targeting miR-129-5p/SOX4 axis. |
---|