Cargando…

Synthesis and Characterization of a Novel Dual-Responsive Nanogel for Anticancer Drug Delivery

In this study, to reduce the side effects of anticancer drugs and also to increase the efficiency of current drug delivery systems, a pH and temperature-responsive polymeric nanogel was synthesized by copolymerization of N-vinylcaprolactam (VCL) and acrylic acid (AA) monomers (P(VCL-co-AA)) with a n...

Descripción completa

Detalles Bibliográficos
Autores principales: Aminoleslami, Darya, Porrang, Sahar, Vahedi, Parviz, Davaran, Soodabeh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526620/
https://www.ncbi.nlm.nih.gov/pubmed/36193087
http://dx.doi.org/10.1155/2022/1548410
Descripción
Sumario:In this study, to reduce the side effects of anticancer drugs and also to increase the efficiency of current drug delivery systems, a pH and temperature-responsive polymeric nanogel was synthesized by copolymerization of N-vinylcaprolactam (VCL) and acrylic acid (AA) monomers (P(VCL-co-AA)) with a novel cross-linker, triethylene glycol dimethacrylate (TEGDMA), as a biocompatible and nontoxic component. The structural and physicochemical features of the P(VCL-co-AA) nanogel were characterized by FT-IR, DLS/Zeta potential, FE-SEM, and (1)HNMR techniques. The results indicated that spherical polymeric nanogel was successfully synthesized with a 182 nm diameter. The results showed that the polymerization process continues with the opening of the carbon-carbon double bond of monomers, which was approved by C-C band removing located at 1600 cm(−1). Doxorubicin (Dox) as a chemotherapeutic agent was loaded into the P(VCL-co-AA), whit a significant loading of Dox (83%), and the drug release profile was investigated in the physiological and cancerous site simulated conditions. P(VCL-co-AA) exhibited a pH and temperature-responsive behavior, with an enhanced release rate in the cancerous site condition. The biocompatibility and nontoxicity of P(VCL-co-AA) were approved by MTT assay on the normal human foreskin fibroblasts-2 (HFF-2) cell line. Also, Dox-loaded P(VCL-co-AA) had excellent toxic behavior on the Michigan Cancer Foundation-7 (MCF-7) cell line as model cancerous cells. Moreover, Dox-loaded P(VCL-co-AA) had higher toxicity in comparison with free Dox, which would be a vast advantage in reducing Dox side effects in the clinical cancer treatment applications.