Cargando…
Machine learning-based risk factor analysis of adverse birth outcomes in very low birth weight infants
This study aimed to analyze major predictors of adverse birth outcomes in very low birth weight (VLBW) infants including particulate matter concentration (PM(10)), using machine learning and the national prospective cohort. Data consisted of 10,423 VLBW infants from the Korean Neonatal Network datab...
Autores principales: | Cho, Hannah, Lee, Eun Hee, Lee, Kwang-Sig, Heo, Ju Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526718/ https://www.ncbi.nlm.nih.gov/pubmed/36183001 http://dx.doi.org/10.1038/s41598-022-16234-y |
Ejemplares similares
-
Machine learning-based risk factor analysis of necrotizing enterocolitis in very low birth weight infants
por: Cho, Hannah, et al.
Publicado: (2022) -
Low Birth Weight, Very Low Birth Weight Rates and Gestational Age-Specific Birth Weight Distribution of Korean Newborn Infants
por: Shin, Son-Moon, et al.
Publicado: (2005) -
Application of Machine Learning Approaches to Predict Postnatal Growth Failure in Very Low Birth Weight Infants
por: Han, Jung Ho, et al.
Publicado: (2022) -
Postdischarge growth assessment in very low birth weight infants
por: Park, Joon-Sik, et al.
Publicado: (2017) -
Preterm Birth during Influenza Season Is Associated with Adverse Outcome in Very Low Birth Weight Infants
por: Härtel, Christoph, et al.
Publicado: (2016)