Cargando…
LZS-1, Lanzarote (Canary Island, Spain) lunar (Apollo 14) basaltic soil simulant
The search for Terrestrial Analogues is essential for the development of future permanent or semi-permanent lunar bases. Terrestrial Analogues are zones where it is possible to probe not only scientific instruments, but also other astronaut capabilities in an environment that is similar to the geolo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526752/ https://www.ncbi.nlm.nih.gov/pubmed/36183044 http://dx.doi.org/10.1038/s41598-022-20960-8 |
Sumario: | The search for Terrestrial Analogues is essential for the development of future permanent or semi-permanent lunar bases. Terrestrial Analogues are zones where it is possible to probe not only scientific instruments, but also other astronaut capabilities in an environment that is similar to the geological context, geomorphology, mineralogy, geochemistry, etc. that we can find on Mars, the Moon and even asteroids. This work has focused on a multi-analytical characterization of Peñas de Tao geosite basalts in Lanzarote (Canary Islands, Spain). This characterization starts from a field campaign in which 3000 g of basalt rocks were selected. Subsequently, they were analysed by different techniques to determine their composition at a mineralogical and geochemical level, and the results were compared with data from other lunar simulants and from the Apollo 14 mission. After that, a set of petrophysical tests was carried out in order to determine its physical properties and evaluate its capacity as an analogous material for use in situ as a resource for further geological and astrobiological (future lunar habitability) essays. |
---|