Cargando…

A smart magnetic hydrogel containing exosome promotes osteogenic commitment of human adipose-derived mesenchymal stem cells

OBJECTIVE(S): Exosomes, as nano-sized extracellular vehicles acting as cell-to-cell communicators, are novel promising therapeutics in the area of bone tissue engineering. Moreover, magnetic nanoparticles, whose integration with other appropriate components is viewed as an intriguing approach to str...

Descripción completa

Detalles Bibliográficos
Autores principales: Sadeghian-Nodoushan, Fatemeh, Nikukar, Habib, Soleimani, Masoud, Jalali- Jahromi, Azarmidokht, Hosseinzadeh, Simzar, Khojasteh, Arash
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mashhad University of Medical Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526893/
https://www.ncbi.nlm.nih.gov/pubmed/36246059
http://dx.doi.org/10.22038/IJBMS.2022.64682.14237
Descripción
Sumario:OBJECTIVE(S): Exosomes, as nano-sized extracellular vehicles acting as cell-to-cell communicators, are novel promising therapeutics in the area of bone tissue engineering. Moreover, magnetic nanoparticles, whose integration with other appropriate components is viewed as an intriguing approach to strengthen bone tissue engineering efficacy. We investigated the effect of magnetic enriched with exosomes on osteogenic differentiation. MATERIALS AND METHODS: Exosomes were isolated from human adipose-derived mesenchymal stem cells by Exo-spin™ kit (MSC-EX). Alginate (Alg) scaffold containing 1% (w/w) cobalt ferrite nanoparticles (CoFe2O4) was produced. MSC-EX were gently loaded onto Alg and Alg-cobalt ferrite (Alg-CF) scaffolds yielding Alg-EX and Alg-CF-EX scaffolds. The effects of MSC-Ex and magnetic hydrogel composite under an external static magnetic field (SMF) on proliferation and differentiation of MSCs were evaluated by alkaline phosphatase (ALP) activity measurement, alizarin red staining, and energy dispersive X-ray (EDX) analysis. RESULTS: Our results showed that Alg and Alg-CF scaffolds were not only cytotoxic but also supported AdMSCs proliferation. MSC-EX loading of the scaffolds enhanced AdMSCs proliferation significantly. According to the results, Alg-CF-EX scaffolds under magnetic stimulation exhibited the most potent effect on osteogenic differentiation of cultured AdMSCs as evidenced by higher ALP activity and mineralization. CONCLUSION: We provided evidence that the combination of Alg hydrogel, CFNPs, and MSC-EX resulted in the construction of a bone tissue-engineering scaffold that highly supports the osteogenic commitment of MSCs.