Cargando…
Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods
BACKGROUND: We used a hybrid machine learning systems (HMLS) strategy that includes the extensive search for the discovery of the most optimal HMLSs, including feature selection algorithms, a feature extraction algorithm, and classifiers for diagnosing breast cancer. Hence, this study aims to obtain...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526906/ https://www.ncbi.nlm.nih.gov/pubmed/36183055 http://dx.doi.org/10.1186/s12859-022-04965-8 |
Sumario: | BACKGROUND: We used a hybrid machine learning systems (HMLS) strategy that includes the extensive search for the discovery of the most optimal HMLSs, including feature selection algorithms, a feature extraction algorithm, and classifiers for diagnosing breast cancer. Hence, this study aims to obtain a high-importance transcriptome profile linked with classification procedures that can facilitate the early detection of breast cancer. METHODS: In the present study, 762 breast cancer patients and 138 solid tissue normal subjects were included. Three groups of machine learning (ML) algorithms were employed: (i) four feature selection procedures are employed and compared to select the most valuable feature: (1) ANOVA; (2) Mutual Information; (3) Extra Trees Classifier; and (4) Logistic Regression (LGR), (ii) a feature extraction algorithm (Principal Component Analysis), iii) we utilized 13 classification algorithms accompanied with automated ML hyperparameter tuning, including (1) LGR; (2) Support Vector Machine; (3) Bagging; (4) Gaussian Naive Bayes; (5) Decision Tree; (6) Gradient Boosting Decision Tree; (7) K Nearest Neighborhood; (8) Bernoulli Naive Bayes; (9) Random Forest; (10) AdaBoost, (11) ExtraTrees; (12) Linear Discriminant Analysis; and (13) Multilayer Perceptron (MLP). For evaluating the proposed models' performance, balance accuracy and area under the curve (AUC) were used. RESULTS: Feature selection procedure LGR + MLP classifier achieved the highest prediction accuracy and AUC (balanced accuracy: 0.86, AUC = 0.94), followed by an LGR + LGR classifier (balanced accuracy: 0.84, AUC = 0.94). The results showed that achieved AUC for the LGR + LGR classifier belonged to the 20 biomarkers as follows: TMEM212, SNORD115-13, ATP1A4, FRG2, CFHR4, ZCCHC13, FLJ46361, LY6G6E, ZNF323, KRT28, KRT25, LPPR5, C10orf99, PRKACG, SULT2A1, GRIN2C, EN2, GBA2, CUX2, and SNORA66. CONCLUSIONS: The best performance was achieved using the LGR feature selection procedure and MLP classifier. Results show that the 20 biomarkers had the highest score or ranking in breast cancer detection. |
---|