Cargando…
Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods
BACKGROUND: We used a hybrid machine learning systems (HMLS) strategy that includes the extensive search for the discovery of the most optimal HMLSs, including feature selection algorithms, a feature extraction algorithm, and classifiers for diagnosing breast cancer. Hence, this study aims to obtain...
Autores principales: | Taghizadeh, Eskandar, Heydarheydari, Sahel, Saberi, Alihossein, JafarpoorNesheli, Shabnam, Rezaeijo, Seyed Masoud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526906/ https://www.ncbi.nlm.nih.gov/pubmed/36183055 http://dx.doi.org/10.1186/s12859-022-04965-8 |
Ejemplares similares
-
Segmentation of the prostate, its zones, anterior fibromuscular stroma, and urethra on the MRIs and multimodality image fusion using U-Net model
por: Rezaeijo, Seyed Masoud, et al.
Publicado: (2022) -
Auto-segmentation of head and neck tumors in positron emission tomography images using non-local means and morphological frameworks
por: Heydarheydari, Sahel, et al.
Publicado: (2023) -
Exploring the efficacy of multi-flavored feature extraction with radiomics and deep features for prostate cancer grading on mpMRI
por: Khanfari, Hasan, et al.
Publicado: (2023) -
Machine learning approach for automated predicting of COVID-19 severity based on clinical and paraclinical characteristics: Serum levels of zinc, calcium, and vitamin D
por: Jahangirimehr, Azam, et al.
Publicado: (2022) -
Deep versus Handcrafted Tensor Radiomics Features: Prediction of Survival in Head and Neck Cancer Using Machine Learning and Fusion Techniques
por: Salmanpour, Mohammad R., et al.
Publicado: (2023)