Cargando…
Knowledge-based and data-driven underground pressure forecasting based on graph structure learning
The pressure prediction technology whereby represents the rock pressure law in the excavation is fundamental to safety in production and industrial intelligentization. A growing number of researchers dedicate that machine learning is used to accurate prediction of underground pressure changes. Howev...
Autores principales: | Wang, Yue, Liu, Mingsheng, Huang, Yongjian, Zhou, Haifeng, Wang, Xianhui, Wang, Senzhang, Du, Haohua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9527076/ https://www.ncbi.nlm.nih.gov/pubmed/36212087 http://dx.doi.org/10.1007/s13042-022-01650-3 |
Ejemplares similares
-
IMF: Interpretable Multi-Hop Forecasting on Temporal Knowledge Graphs
por: Du, Zhenyu, et al.
Publicado: (2023) -
Iterative heterogeneous graph learning for knowledge graph-based recommendation
por: Liu, Tieyuan, et al.
Publicado: (2023) -
CADA: phenotype-driven gene prioritization based on a case-enriched knowledge graph
por: Peng, Chengyao, et al.
Publicado: (2021) -
Learning self-driven collective dynamics with graph networks
por: Wang, Rui, et al.
Publicado: (2022) -
Regional Population Forecast and Analysis Based on Machine Learning Strategy
por: Wang, Chian-Yue, et al.
Publicado: (2021)