Cargando…
Equilibrium-based COVID-19 diagnosis from routine blood tests: A sparse deep convolutional model
SARS-CoV2 (COVID-19) is the virus that causes the pandemic that has severely impacted human society with a massive death toll worldwide. Hence, there is a persistent need for fast and reliable automatic tools to help health teams in making clinical decisions. Predictive models could potentially ease...
Autores principales: | Altantawy, Doaa A., Kishk, Sherif S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9527205/ https://www.ncbi.nlm.nih.gov/pubmed/36210961 http://dx.doi.org/10.1016/j.eswa.2022.118935 |
Ejemplares similares
-
Hierarchical Sparse Coding of Objects in Deep Convolutional Neural Networks
por: Liu, Xingyu, et al.
Publicado: (2020) -
Deep forest model for diagnosing COVID-19 from routine blood tests
por: AlJame, Maryam, et al.
Publicado: (2021) -
SECOND: Sparsely Embedded Convolutional Detection
por: Yan, Yan, et al.
Publicado: (2018) -
COVID-19 diagnosis by routine blood tests using machine learning
por: Kukar, Matjaž, et al.
Publicado: (2021) -
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019)