Cargando…
Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis
Heterogeneous catalytic reactions are influenced by a subtle interplay of atomic-scale factors, ranging from the catalysts’ local morphology to the presence of high adsorbate coverages. Describing such phenomena via computational models requires generation and analysis of a large space of atomic con...
Autores principales: | Ghanekar, Pushkar G., Deshpande, Siddharth, Greeley, Jeffrey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9527237/ https://www.ncbi.nlm.nih.gov/pubmed/36184625 http://dx.doi.org/10.1038/s41467-022-33256-2 |
Ejemplares similares
-
Fine Chemicals through heterogeneous catalysis/
Publicado: (2001) -
Machine
Learning Identifies Chemical Characteristics
That Promote Enzyme Catalysis
por: Bonk, Brian M., et al.
Publicado: (2019) -
Theory of the Kinetics of Chemical Potentials in Heterogeneous Catalysis
por: Cheng, Jun, et al.
Publicado: (2011) -
The Role of In Situ/Operando IR Spectroscopy in Unraveling
Adsorbate-Induced Structural Changes
in Heterogeneous Catalysis
por: Groppo, Elena, et al.
Publicado: (2023) -
AIgean: An Open Framework for Machine Learning on Heterogeneous Clusters
por: Tarafdar, Naif, et al.
Publicado: (2020)