Cargando…
Self-organization of an inhomogeneous memristive hardware for sequence learning
Learning is a fundamental component of creating intelligent machines. Biological intelligence orchestrates synaptic and neuronal learning at multiple time scales to self-organize populations of neurons for solving complex tasks. Inspired by this, we design and experimentally demonstrate an adaptive...
Autores principales: | Payvand, Melika, Moro, Filippo, Nomura, Kumiko, Dalgaty, Thomas, Vianello, Elisa, Nishi, Yoshifumi, Indiveri, Giacomo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9527242/ https://www.ncbi.nlm.nih.gov/pubmed/36184665 http://dx.doi.org/10.1038/s41467-022-33476-6 |
Ejemplares similares
-
Author Correction: Self-organization of an inhomogeneous memristive hardware for sequence learning
por: Payvand, Melika, et al.
Publicado: (2022) -
Neuromorphic object localization using resistive memories and ultrasonic transducers
por: Moro, Filippo, et al.
Publicado: (2022) -
Editorial: Hardware for artificial intelligence
por: Boybat, Irem, et al.
Publicado: (2022) -
Emulating short-term synaptic dynamics with memristive devices
por: Berdan, Radu, et al.
Publicado: (2016) -
Challenges hindering memristive neuromorphic hardware from going mainstream
por: Adam, Gina C., et al.
Publicado: (2018)