Cargando…
Machine learning identifies exosome features related to hepatocellular carcinoma
Background: Hepatocellular carcinoma (HCC) is one of the most malignant tumors with a poor prognosis. There is still a lack of effective biomarkers to predict its prognosis. Exosomes participate in intercellular communication and play an important role in the development and progression of cancers....
Autores principales: | Zhu, Kai, Tao, Qiqi, Yan, Jiatao, Lang, Zhichao, Li, Xinmiao, Li, Yifei, Fan, Congcong, Yu, Zhengping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9527306/ https://www.ncbi.nlm.nih.gov/pubmed/36200042 http://dx.doi.org/10.3389/fcell.2022.1020415 |
Ejemplares similares
-
Construction of a novel exosomes-related gene signature in hepatocellular carcinoma
por: Tao, Qiqi, et al.
Publicado: (2022) -
Integrative Analysis of Biomarkers Through Machine Learning Identifies Stemness Features in Colorectal Cancer
por: Wei, Ran, et al.
Publicado: (2021) -
Bioinformatics Study Revealed Significance of Exosome Transcriptome in Hepatocellular Carcinoma Diagnosis
por: Wu, Zeng-Hong, et al.
Publicado: (2022) -
Single cell and bulk transcriptome analysis identified oxidative stress response-related features of Hepatocellular Carcinoma
por: Zhang, Shuqiao, et al.
Publicado: (2023) -
Exosomal microRNA panel as a diagnostic biomarker in patients with hepatocellular carcinoma
por: Yang, Jingwen, et al.
Publicado: (2022)