Cargando…

EGFR suppresses p53 function by promoting p53 binding to DNA-PKcs: a noncanonical regulatory axis between EGFR and wild-type p53 in glioblastoma

BACKGROUND: Epidermal growth factor receptor (EGFR) amplification and TP53 mutation are the two most common genetic alterations in glioblastoma multiforme (GBM). A comprehensive analysis of the TCGA GBM database revealed a subgroup with near mutual exclusivity of EGFR amplification and TP53 mutation...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Jie, Li, Xiaolong, Khan, Sabbir, Zhang, Chen, Gao, Feng, Sen, Shayak, Wasylishen, Amanda R, Zhao, Yang, Lozano, Guillermina, Koul, Dimpy, Alfred Yung, W K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9527520/
https://www.ncbi.nlm.nih.gov/pubmed/35474131
http://dx.doi.org/10.1093/neuonc/noac105
Descripción
Sumario:BACKGROUND: Epidermal growth factor receptor (EGFR) amplification and TP53 mutation are the two most common genetic alterations in glioblastoma multiforme (GBM). A comprehensive analysis of the TCGA GBM database revealed a subgroup with near mutual exclusivity of EGFR amplification and TP53 mutations indicative of a role of EGFR in regulating wild-type-p53 (wt-p53) function. The relationship between EGFR amplification and wt-p53 function remains undefined and this study describes the biological significance of this interaction in GBM. METHODS: Mass spectrometry was used to identify EGFR-dependent p53-interacting proteins. The p53 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) interaction was detected by co-immunoprecipitation. We used CRISPR-Cas9 gene editing to knockout EGFR and DNA-PKcs and the Edit-R CRIPSR-Cas9 system for conditional knockout of EGFR. ROS activity was measured with a CM-H(2)DCFDA probe, and real-time PCR was used to quantify expression of p53 target genes. RESULTS: Using glioma sphere-forming cells (GSCs), we identified, DNA-PKcs as a p53 interacting protein that functionally inhibits p53 activity. We demonstrate that EGFR knockdown increased wt-p53 transcriptional activity, which was associated with decreased binding between p53 and DNA-PKcs. We further show that inhibition of DNA-PKcs either by siRNA or an inhibitor (nedisertib) increased wt-p53 transcriptional activity, which was not enhanced further by EGFR knockdown, indicating that EGFR suppressed wt-p53 activity through DNA-PKcs binding with p53. Finally, using conditional EGFR-knockout GSCs, we show that depleting EGFR increased animal survival in mice transplanted with wt-p53 GSCs. CONCLUSION: This study demonstrates that EGFR signaling inhibits wt-p53 function in GBM by promoting an interaction between p53 and DNA-PKcs.