Cargando…
Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies
Accurate prediction of chemical reactions in solution is challenging for current state-of-the-art approaches based on transition state modelling with density functional theory. Models based on machine learning have emerged as a promising alternative to address these problems, but these models curren...
Autores principales: | Jorner, Kjell, Brinck, Tore, Norrby, Per-Ola, Buttar, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9528810/ https://www.ncbi.nlm.nih.gov/pubmed/36299676 http://dx.doi.org/10.1039/d0sc04896h |
Ejemplares similares
-
Triplet state homoaromaticity: concept, computational validation and experimental relevance
por: Jorner, Kjell, et al.
Publicado: (2018) -
Fitting quantum machine learning potentials to experimental free energy data: predicting tautomer ratios in solution
por: Wieder, Marcus, et al.
Publicado: (2021) -
Predicting phosphorescence energies and inferring wavefunction localization with machine learning
por: Sifain, Andrew E., et al.
Publicado: (2021) -
Competing Pathways in O‐Arylations with Diaryliodonium Salts: Mechanistic Insights
por: Stridfeldt, Elin, et al.
Publicado: (2017) -
Machine learning and semi-empirical calculations: a synergistic approach to rapid, accurate, and mechanism-based reaction barrier prediction
por: Farrar, Elliot H. E., et al.
Publicado: (2022)