Cargando…

Unsupervised cell functional annotation for single-cell RNA-seq

One of the first steps in the analysis of single-cell RNA sequencing (scRNA-seq) data is the assignment of cell types. Although a number of supervised methods have been developed for this, in most cases such assignment is performed by first clustering cells in low-dimensional space and then assignin...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Dongshunyi, Ding, Jun, Bar-Joseph, Ziv
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9528981/
https://www.ncbi.nlm.nih.gov/pubmed/35764397
http://dx.doi.org/10.1101/gr.276609.122
Descripción
Sumario:One of the first steps in the analysis of single-cell RNA sequencing (scRNA-seq) data is the assignment of cell types. Although a number of supervised methods have been developed for this, in most cases such assignment is performed by first clustering cells in low-dimensional space and then assigning cell types to different clusters. To overcome noise and to improve cell type assignments, we developed UNIFAN, a neural network method that simultaneously clusters and annotates cells using known gene sets. UNIFAN combines both low-dimensional representation for all genes and cell-specific gene set activity scores to determine the clustering. We applied UNIFAN to human and mouse scRNA-seq data sets from several different organs. We show, by using knowledge about gene sets, that UNIFAN greatly outperforms prior methods developed for clustering scRNA-seq data. The gene sets assigned by UNIFAN to different clusters provide strong evidence for the cell type that is represented by this cluster, making annotations easier.