Cargando…

miRNA-331-3p Affects the Proliferation, Metastasis, and Invasion of Osteosarcoma through SOCS1/JAK2/STAT3

MicroRNAs (miRNAs) are regulatory small noncoding RNAs that play a key role in several types of cancer. It has been reported that miR-331-3p is involved in the development and progression of various cancers, but there are few reports regarding osteosarcoma (OS). The public GEO database was used to a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zu, Dan, Dong, Qi, Chen, Sunfang, Chen, Yongde, Yao, Jun, Zou, Yubin, Lin, Jiawei, Fang, Bin, Wu, Bing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529391/
https://www.ncbi.nlm.nih.gov/pubmed/36199788
http://dx.doi.org/10.1155/2022/6459029
Descripción
Sumario:MicroRNAs (miRNAs) are regulatory small noncoding RNAs that play a key role in several types of cancer. It has been reported that miR-331-3p is involved in the development and progression of various cancers, but there are few reports regarding osteosarcoma (OS). The public GEO database was used to analyze the survival difference of miR-331-3p in OS organizations. The level of cell proliferation assay was assessed by CCK-8 and colony formation. First, transwell and wound-healing assays were used to detect the transfer and invasion ability of miR-331-3p in OS. Second, TargetScan, miRDBmiR, TarBase, and dual-luciferase reporter gene assays were used to determine SOCS1 as a targeted regulator. Third, Western blot and immunohistochemistry were used to detect the expression of protein levels. Finally, a mouse model of subcutaneously transplantable tumors is used to evaluate the proliferation of OS in vivo. The low expression of miR-331-3p was negatively correlated with the overall survival of OS patients. Overexpression of miR-331-3p significantly inhibited cell proliferation, metastasis, and invasion. Moreover, miR-331-3p affected the occurrence and development of osteosarcoma by targeting the SOCS1/JAK2/STAT3 signaling pathway. Therefore, miR-331-3p reduces the expression of SOCS1 by combining with its 3′UTR, thereby activating the JAK2/STAT3 signaling pathway to regulate the progression of OS. This provides a new theoretical basis for the treatment of osteosarcoma.