Cargando…
Lightweight Image Super-Resolution Based on Re-Parameterization and Self-Calibrated Convolution
Image super-resolution technique can improve image quality by increasing image clarity, bringing a better user experience in real production scenarios. However, existing convolutional neural network methods usually have very deep network layers and a large number of parameters, which causes feature...
Autores principales: | Zhang, Sufan, Chen, Xi, Huang, Xingwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529453/ https://www.ncbi.nlm.nih.gov/pubmed/36199958 http://dx.doi.org/10.1155/2022/8628402 |
Ejemplares similares
-
Lightweight Super-Resolution with Self-Calibrated Convolution for Panoramic Videos
por: Shang, Fanjie, et al.
Publicado: (2022) -
Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution
por: Shen, Ying, et al.
Publicado: (2023) -
Spatial and Channel Aggregation Network for Lightweight Image Super-Resolution
por: Wu, Xianyu, et al.
Publicado: (2023) -
Efficient Image Super-Resolution via Self-Calibrated Feature Fuse
por: Tan, Congming, et al.
Publicado: (2022) -
Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
por: Zhang, Min, et al.
Publicado: (2021)