Cargando…

Superlative Feature Selection Based Image Classification Using Deep Learning in Medical Imaging

Medical image recognition plays an essential role in the forecasting and early identification of serious diseases in the field of identification. Medical pictures are essential to a patient's health record since they may be used to control, manage, and treat illnesses. On the other hand, image...

Descripción completa

Detalles Bibliográficos
Autores principales: Humayun, Mamoona, Khalil, Muhammad Ibrahim, Alwakid, Ghadah, Jhanjhi, N. Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529489/
https://www.ncbi.nlm.nih.gov/pubmed/36199372
http://dx.doi.org/10.1155/2022/7028717
Descripción
Sumario:Medical image recognition plays an essential role in the forecasting and early identification of serious diseases in the field of identification. Medical pictures are essential to a patient's health record since they may be used to control, manage, and treat illnesses. On the other hand, image categorization is a difficult problem in diagnostics. This paper provides an enhanced classifier based on the outstanding Feature Selection oriented Clinical Classifier using the Deep Learning (DL) model, which incorporates preprocessing, extraction of features, and classifying. The paper aims to develop an optimum feature extraction model for successful medical imaging categorization. The proposed methodology is based on feature extraction with the pretrained EfficientNetB0 model. The optimum features enhanced the classifier performance and raised the precision, recall, F1 score, accuracy, and detection of medical pictures to improve the effectiveness of the DL classifier. The paper aims to develop an optimum feature extraction model for successful medical imaging categorization. The optimum features enhanced the classifier performance and raised the result parameters for detecting medical pictures to improve the effectiveness of the DL classifier. Experiment findings reveal that our presented approach outperforms and achieves 98% accuracy.