Cargando…

The effects of L-carnitine-loaded solid lipid nanoparticles on performance, antioxidant parameters, and expression of genes associated with cholesterol metabolism in laying hens

The purpose of this study was to investigate the production performance, antioxidant parameters, egg yolk cholesterol content, and expression of genes related to cholesterol metabolism in laying hens fed L-carnitine (LC) and L-carnitine-loaded solid lipid nanoparticles (LC-SLNs). A total of 350 Hy-L...

Descripción completa

Detalles Bibliográficos
Autores principales: Eskandani, Masoud, Navidshad, Bahman, Eskandani, Morteza, Vandghanooni, Somayeh, Aghjehgheshlagh, Farzad Mirzaei, Nobakht, Ali, Shahbazfar, Amir Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529590/
https://www.ncbi.nlm.nih.gov/pubmed/36191516
http://dx.doi.org/10.1016/j.psj.2022.102162
Descripción
Sumario:The purpose of this study was to investigate the production performance, antioxidant parameters, egg yolk cholesterol content, and expression of genes related to cholesterol metabolism in laying hens fed L-carnitine (LC) and L-carnitine-loaded solid lipid nanoparticles (LC-SLNs). A total of 350 Hy-Line (w-36) laying hens at 50 wk of age (1520.0 ± 0.7 g) were randomly assigned to 35 units (5 replicates and 50 hens in each treatment) with seven dietary treatments as a completely randomized design. The dietary treatments were corn-soybean meal-based diets, including 1) Control (basal diet); 2) Basal diet +50 mg/kg LC (50LC); 3) Basal diet +100 mg/kg LC (100LC); 4) Basal diet +150 mg/kg LC (150LC); 5) Basal diet +50 mg/kg LC-SLNs (50LC-SLNs); 6) Basal diet +100 mg/kg LC-SLNs (100LC-SLNs) and 7) Basal diet +150 mg/kg LC-SLNs (150LC-SLNs). Results showed that the 50LC-SLNs had the least feed conversion ratio (FCR) in all groups (P < 0.05). The dietary supplementation of 100LC-SLNs decreased (P < 0.01) the egg yolk cholesterol concentration from 14.71 to 11.76 mg/g yolk (25%). The 50LC-SLNs group produced the most total antioxidant capacity with a difference of 58.44% compared to the control group (P < 0.01). The greatest amount of total superoxide dismutase was found for 50LC-SLNs (P < 0.05), while the glutathione peroxidase was not affected by the experimental treatments (P > 0.05). Serum malondialdehyde levels were reduced by 50.52% in laying hens fed 50LC-SLNs compared to the control group (P < 0.05). The transcript level of 3-hydroxy-3-methylglutaryl coenzyme A reductase was significantly decreased (P < 0.01) in the LC and LC-SLNs groups. The expression of cholesterol 7α-hydroxylase was significantly increased (P < 0.01) in the plain LC (∼83%) and LC-SLNs (∼91%) groups. The inclusion of LC-SLNs in the diet increased (P < 0.05) the villus height and decreased villus width in all three parts of the small intestine. Dietary inclusion of LC was found to reduce egg yolk and serum cholesterol content by improving the production performance and antioxidant status. The LC-SLNs groups were more affected than the plain LC groups, which may be attributed to the increased bioavailability of LC.