Cargando…

Different mechanisms driving increasing abundance of microbial phosphorus cycling gene groups along an elevational gradient

Microbes play an integral role in forest soil phosphorus (P) cycling. However, the variation of microbial P-cycling functional genes and their controlling factors in forest soils is unclearly. We used metagenomics to investigate changes in the abundance of genes involved in P-starvation response reg...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yi, Wang, Jieying, He, Liyuan, Xu, Xiaofeng, Wang, Jun, Ren, Chengjie, Guo, Yaoxin, Zhao, Fazhu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529982/
https://www.ncbi.nlm.nih.gov/pubmed/36204265
http://dx.doi.org/10.1016/j.isci.2022.105170
Descripción
Sumario:Microbes play an integral role in forest soil phosphorus (P) cycling. However, the variation of microbial P-cycling functional genes and their controlling factors in forest soils is unclearly. We used metagenomics to investigate changes in the abundance of genes involved in P-starvation response regulation, P-uptake and transport, and P-solubilization and mineralization along the five elevational gradients. Our results showed the abundance of three P cycling gene groups increasing along the elevational gradient. Acidobacteria and Proteobacteria were the dominant microbial phyla determining the turnover of soil P-solubilization and immobilization. Along the elevational gradient, soil substrates are the major factor explaining variation in P-starvation response regulation genes. Soil environment is the main driver of P-uptake and transport and P-solubilization and mineralization genes. This study provided insights into the regulation of P-cycling from a microbial functional profile perspective, highlighting the importance of substrate and environmental factors for P-cycling genes in forest soils.