Cargando…
Interpretable machine learning prediction of all-cause mortality
BACKGROUND: Unlike linear models which are traditionally used to study all-cause mortality, complex machine learning models can capture non-linear interrelations and provide opportunities to identify unexplored risk factors. Explainable artificial intelligence can improve prediction accuracy over li...
Autores principales: | Qiu, Wei, Chen, Hugh, Dincer, Ayse Berceste, Lundberg, Scott, Kaeberlein, Matt, Lee, Su-In |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9530124/ https://www.ncbi.nlm.nih.gov/pubmed/36204043 http://dx.doi.org/10.1038/s43856-022-00180-x |
Ejemplares similares
-
Interpretable prediction of 3-year all-cause mortality in patients with chronic heart failure based on machine learning
por: Xu, Chenggong, et al.
Publicado: (2023) -
An automatic integrative method for learning interpretable communities of biological pathways
por: Beebe-Wang, Nicasia, et al.
Publicado: (2022) -
Predicting in-hospital all-cause mortality in heart failure using machine learning
por: Mpanya, Dineo, et al.
Publicado: (2023) -
COMBINING MACHINE LEARNING WITH AUTOMATED NEMATODE LIFESPAN ANALYSIS TO IDENTIFY MODIFIERS OF ALZHEIMER’S DISEASE
por: Russell, Joshua, et al.
Publicado: (2019) -
Prediction of all-cause mortality in coronary artery disease patients with atrial fibrillation based on machine learning models
por: Liu, Xinyun, et al.
Publicado: (2021)