Cargando…
Mechanoregulation of Metastasis beyond the Matrix
Epithelial transformation and carcinogenesis are characterized by profound alterations in cell mechanics that significantly affect multiple steps of the metastatic cascade. The ability of cancer cells to grow in the primary tumor, to locally invade through the confining extracellular matrix, to surv...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for Cancer Research
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9530650/ https://www.ncbi.nlm.nih.gov/pubmed/35877197 http://dx.doi.org/10.1158/0008-5472.CAN-22-0419 |
Sumario: | Epithelial transformation and carcinogenesis are characterized by profound alterations in cell mechanics that significantly affect multiple steps of the metastatic cascade. The ability of cancer cells to grow in the primary tumor, to locally invade through the confining extracellular matrix, to survive in circulation, and to extravasate into distant vital organs all depend on specific mechanical characteristics. Importantly, recent studies have shown that the mechanical properties of cancer cells also influence their interactions with immune and stromal cells. Here, we discuss the mechanical changes that cancer cells undergo during metastasis, how these changes affect immune and stromal responses, and the implications of these new insights for therapeutic intervention. |
---|