Cargando…
Investigation of independent reinforcement learning algorithms in multi-agent environments
Independent reinforcement learning algorithms have no theoretical guarantees for finding the best policy in multi-agent settings. However, in practice, prior works have reported good performance with independent algorithms in some domains and bad performance in others. Moreover, a comprehensive stud...
Autores principales: | Lee, Ken Ming, Ganapathi Subramanian, Sriram, Crowley, Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9530713/ https://www.ncbi.nlm.nih.gov/pubmed/36204598 http://dx.doi.org/10.3389/frai.2022.805823 |
Ejemplares similares
-
A Unifying Framework for Reinforcement Learning and Planning
por: Moerland, Thomas M., et al.
Publicado: (2022) -
Video captioning based on vision transformer and reinforcement learning
por: Zhao, Hong, et al.
Publicado: (2022) -
Gamma and vega hedging using deep distributional reinforcement learning
por: Cao, Jay, et al.
Publicado: (2023) -
Explainable AI and Reinforcement Learning—A Systematic Review of Current Approaches and Trends
por: Wells, Lindsay, et al.
Publicado: (2021) -
Towards the portability of knowledge in reinforcement learning-based systems for automatic drone navigation
por: Barreiro, José M., et al.
Publicado: (2023)