Cargando…
MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks
Spiking Neural Networks (SNNs) are considered more biologically realistic and power-efficient as they imitate the fundamental mechanism of the human brain. Backpropagation (BP) based SNN learning algorithms that utilize deep learning frameworks have achieved good performance. However, those BP-based...
Autores principales: | Yu, Chengting, Du, Yangkai, Chen, Mufeng, Wang, Aili, Wang, Gaoang, Li, Erping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531034/ https://www.ncbi.nlm.nih.gov/pubmed/36203801 http://dx.doi.org/10.3389/fnins.2022.945037 |
Ejemplares similares
-
STSC-SNN: Spatio-Temporal Synaptic Connection with temporal convolution and attention for spiking neural networks
por: Yu, Chengting, et al.
Publicado: (2022) -
Adaptive structure evolution and biologically plausible synaptic plasticity for recurrent spiking neural networks
por: Pan, Wenxuan, et al.
Publicado: (2023) -
Temporal sequence learning via adaptation in biologically plausible spiking neural networks
por: Duarte, Renato, et al.
Publicado: (2014) -
Spike-Timing Dependent Plasticity and the Cognitive Map
por: Bush, Daniel, et al.
Publicado: (2010) -
Spiking Neural Network (SNN) With Memristor Synapses Having Non-linear Weight Update
por: Kim, Taeyoon, et al.
Publicado: (2021)