Cargando…
Loss-Based Attention for Interpreting Image-Level Prediction of Convolutional Neural Networks
Although deep neural networks have achieved great success on numerous large-scale tasks, poor interpretability is still a notorious obstacle for practical applications. In this paper, we propose a novel and general attention mechanism, loss-based attention, upon which we modify deep neural networks...
Autores principales: | Shi, Xiaoshuang, Xing, Fuyong, Xu, Kaidi, Chen, Pingjun, Liang, Yun, Lu, Zhiyong, Guo, Zhenhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531187/ https://www.ncbi.nlm.nih.gov/pubmed/33382655 http://dx.doi.org/10.1109/TIP.2020.3046875 |
Ejemplares similares
-
Towards pixel-to-pixel deep nucleus detection in microscopy images
por: Xing, Fuyong, et al.
Publicado: (2019) -
Correction to: Towards pixel-to-pixel deep nucleus detection in microscopy images
por: Xing, Fuyong, et al.
Publicado: (2019) -
Effectiveness of convolutional neural networks in the interpretation of pulmonary cytologic images in endobronchial ultrasound procedures
por: Lin, Ching‐Kai, et al.
Publicado: (2021) -
Attention-Based Convolutional Neural Network for Ingredients Identification
por: Chen, Shi, et al.
Publicado: (2023) -
Predicting Brain Age at Slice Level: Convolutional Neural Networks and Consequences for Interpretability
por: Ballester, Pedro L., et al.
Publicado: (2021)