Cargando…

Accuracy and comparison of sensor-based gait speed estimations under standardized and daily life conditions in children undergoing rehabilitation

BACKGROUND: Gait speed is a widely used outcome measure to assess the walking abilities of children undergoing rehabilitation. It is routinely determined during a walking test under standardized conditions, but it remains unclear whether these outcomes reflect the children's performance in dail...

Descripción completa

Detalles Bibliográficos
Autores principales: Rast, Fabian Marcel, Aschwanden, Seraina, Werner, Charlotte, Demkó, László, Labruyère, Rob
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531434/
https://www.ncbi.nlm.nih.gov/pubmed/36195950
http://dx.doi.org/10.1186/s12984-022-01079-3
Descripción
Sumario:BACKGROUND: Gait speed is a widely used outcome measure to assess the walking abilities of children undergoing rehabilitation. It is routinely determined during a walking test under standardized conditions, but it remains unclear whether these outcomes reflect the children's performance in daily life. An ankle-worn inertial sensor provides a usable opportunity to measure gait speed in the children's habitual environment. However, sensor-based gait speed estimations need to be accurate to allow for comparison of the children's gait speed between a test situation and daily life. Hence, the first aim of this study was to determine the measurement error of a novel algorithm that estimates gait speed based on data of a single ankle-worn inertial sensor in children undergoing rehabilitation. The second aim of this study was to compare the children’s gait speed between standardized and daily life conditions. METHODS: Twenty-four children with walking impairments completed four walking tests at different speeds (standardized condition) and were monitored for one hour during leisure or school time (daily life condition). We determined accuracy by comparing sensor-based gait speed estimations with a reference method in both conditions. Eventually, we compared individual gait speeds between the two conditions. RESULTS: The measurement error was 0.01 ± 0.07 m/s under the standardized and 0.04 ± 0.06 m/s under the daily life condition. Besides, the majority of children did not use the same speed during the test situation as in daily life. CONCLUSION: This study demonstrates an accurate method to measure children's gait speed during standardized walking tests and in the children's habitual environment after rehabilitation. It only requires a single ankle sensor, which potentially increases wearing time and data quality of measurements in daily life. We recommend placing the sensor on the less affected side, unless the child wears one orthosis. In this latter case, the sensor should be placed on the side with the orthosis. Moreover, this study showed that most children did not use the same speed in the two conditions, which encourages the use of wearable inertial sensors to assess the children's walking performance in their habitual environment following rehabilitation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12984-022-01079-3.