Cargando…
Random-forest model for drug–target interaction prediction via Kullbeck–Leibler divergence
Virtual screening has significantly improved the success rate of early stage drug discovery. Recent virtual screening methods have improved owing to advances in machine learning and chemical information. Among these advances, the creative extraction of drug features is important for predicting drug–...
Autores principales: | Ahn, Sangjin, Lee, Si Eun, Kim, Mi-hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531514/ https://www.ncbi.nlm.nih.gov/pubmed/36192818 http://dx.doi.org/10.1186/s13321-022-00644-1 |
Ejemplares similares
-
Correction : Random-forest model for drug–target interaction prediction via Kullback–Leibler divergence
por: Ahn, Sangjin, et al.
Publicado: (2022) -
Kullback–Leibler divergence and the Pareto–Exponential approximation
por: Weinberg, G. V.
Publicado: (2016) -
Computation of Kullback–Leibler Divergence in Bayesian Networks
por: Moral, Serafín, et al.
Publicado: (2021) -
Kullback Leibler divergence in complete bacterial and phage genomes
por: Akhter, Sajia, et al.
Publicado: (2017) -
Kullback–Leibler Divergence of a Freely Cooling Granular Gas
por: Megías, Alberto, et al.
Publicado: (2020)