Cargando…
Early stage NSCLS patients’ prognostic prediction with multi-information using transformer and graph neural network model
BACKGROUND: We proposed a population graph with Transformer-generated and clinical features for the purpose of predicting overall survival (OS) and recurrence-free survival (RFS) for patients with early stage non-small cell lung carcinomas and to compare this model with traditional models. METHODS:...
Autores principales: | Lian, Jie, Deng, Jiajun, Hui, Edward S, Koohi-Moghadam, Mohamad, She, Yunlang, Chen, Chang, Vardhanabhuti, Varut |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531948/ https://www.ncbi.nlm.nih.gov/pubmed/36194194 http://dx.doi.org/10.7554/eLife.80547 |
Ejemplares similares
-
Self-supervised region-aware segmentation of COVID-19 CT images using 3D GAN and contrastive learning
por: Shabani, Siyavash, et al.
Publicado: (2022) -
Predicting CT-Based Coronary Artery Disease Using Vascular Biomarkers Derived from Fundus Photographs with a Graph Convolutional Neural Network
por: Huang, Fan, et al.
Publicado: (2022) -
Graph transformation for enzymatic mechanisms
por: Andersen, Jakob L, et al.
Publicado: (2021) -
Imaging-Based Deep Graph Neural Networks for Survival Analysis in Early Stage Lung Cancer Using CT: A Multicenter Study
por: Lian, Jie, et al.
Publicado: (2022) -
Supervised biological network alignment with graph neural networks
por: Ding, Kerr, et al.
Publicado: (2023)