Cargando…
Improved Manual Annotation of EEG Signals through Convolutional Neural Network Guidance
The development of validated algorithms for automated handling of artifacts is essential for reliable and fast processing of EEG signals. Recently, there have been methodological advances in designing machine-learning algorithms to improve artifact detection of trained professionals who usually meti...
Autores principales: | Diachenko, Marina, Houtman, Simon J., Juarez-Martinez, Erika L., Ramautar, Jennifer R., Weiler, Robin, Mansvelder, Huibert D., Bruining, Hilgo, Bloem, Peter, Linkenkaer-Hansen, Klaus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532020/ https://www.ncbi.nlm.nih.gov/pubmed/36104277 http://dx.doi.org/10.1523/ENEURO.0160-22.2022 |
Ejemplares similares
-
Robin’s Viewer: Using deep-learning predictions to assist EEG annotation
por: Weiler, Robin, et al.
Publicado: (2023) -
Bumetanide Effects on Resting-State EEG in Tuberous Sclerosis Complex in Relation to Clinical Outcome: An Open-Label Study
por: Juarez-Martinez, Erika L., et al.
Publicado: (2022) -
STXBP1 Syndrome Is Characterized by Inhibition-Dominated Dynamics of Resting-State EEG
por: Houtman, Simon J., et al.
Publicado: (2021) -
Measurement of excitation-inhibition ratio in autism spectrum disorder using critical brain dynamics
por: Bruining, Hilgo, et al.
Publicado: (2020) -
ImageJ/Fiji ROI 1-click tools for rapid manual image annotations and measurements
por: Thomas, Laurent S.V., et al.
Publicado: (2020)