Cargando…
GC-MS Profiling, In Vitro Antioxidant, Antimicrobial, and In Silico NADPH Oxidase Inhibition Studies of Essential Oil of Juniperus thurifera Bark
Juniperus thurifera is a native species to the mountains of the western Mediterranean region. It is used in traditional medicine as a natural treatment against infections. The present study aimed to carry out the chemical analysis and evaluate the antioxidant, antimicrobial, as well as in silico inh...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532082/ https://www.ncbi.nlm.nih.gov/pubmed/36204116 http://dx.doi.org/10.1155/2022/6305672 |
_version_ | 1784802036368277504 |
---|---|
author | Lafraxo, Soufyane El Moussaoui, Abdelfattah A Bin Jardan, Yousef El Barnossi, Azeddin Chebaibi, Mohamed Baammi, Soukayna Ait Akka, Aziz Chebbac, Khalid Akhazzane, Mohamed Chelouati, Tarik Nafidi, Hiba-Allah Farid, Khallouki Bourhia, Mohammed Bari, Amina |
author_facet | Lafraxo, Soufyane El Moussaoui, Abdelfattah A Bin Jardan, Yousef El Barnossi, Azeddin Chebaibi, Mohamed Baammi, Soukayna Ait Akka, Aziz Chebbac, Khalid Akhazzane, Mohamed Chelouati, Tarik Nafidi, Hiba-Allah Farid, Khallouki Bourhia, Mohammed Bari, Amina |
author_sort | Lafraxo, Soufyane |
collection | PubMed |
description | Juniperus thurifera is a native species to the mountains of the western Mediterranean region. It is used in traditional medicine as a natural treatment against infections. The present study aimed to carry out the chemical analysis and evaluate the antioxidant, antimicrobial, as well as in silico inhibition studies of the essential oils from Juniperus thurifera bark (EOEJT). Chemical characterization of EOEJT was done by gas chromatography (GC-MS). We have performed three antioxidant assays (Reducing power (FRAP), 2, 2-diphenylpicrylhydrazyl (DPPH), and total antioxidant capacity (TAC)) of the EOEJT. We next evaluated the antimicrobial activity against in silico study, which was carried out to help evaluate the inhibitory effect of EOEJT against NADPH oxidase. Results of the GC/MS analysis revealed seven major compounds in EOEJT wherein muurolol (36%) and elemol (26%) were the major components. Moreover, EOEJT possessed interesting antioxidant potential with an IC(50) respectively of 21.25 ± 1.02 μg/mL, 481.02 ± 5.25 μg/mL, and 271 μg EAA/mg in DPPH, FRAP, and total antioxidant capacity systems. Molecular docking of EOEJT in NADPH oxidase active site showed inhibitory activity of α-cadinol and muurolol with a glide score of −6.041 and −5.956 Kcal/mol, respectively. As regards the antibacterial and antifungal capacities, EOEJT was active against all tested bacteria and all fungi, notably, against Escherichia coli K12 with an inhibition diameter of 21 mm and a MIC value of 0.67 mg/mL, as well as against Proteus mirabilis ATCC 29906 with an inhibition diameter of 18.33 ± 1.15 mm and a MIC value of 1.34 mg/mL. A more pronounced effect was recorded for the fungal pathogens Fusarium oxysporum MTCC 9913 with inhibition of 37.44 ± 0.28% and MIC value of 6.45 mg/mL, as well as against Candida albicans ATCC 10231 with an inhibition diameter of 20.33 ± 1.15 mm and a MIC value of 0.67 ± 0.00 mg/mL. Altogether, these results highlight the importance of EOEJT as a source of natural antibacterial and antioxidant drugs to fight clinically important pathogenic strains. |
format | Online Article Text |
id | pubmed-9532082 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-95320822022-10-05 GC-MS Profiling, In Vitro Antioxidant, Antimicrobial, and In Silico NADPH Oxidase Inhibition Studies of Essential Oil of Juniperus thurifera Bark Lafraxo, Soufyane El Moussaoui, Abdelfattah A Bin Jardan, Yousef El Barnossi, Azeddin Chebaibi, Mohamed Baammi, Soukayna Ait Akka, Aziz Chebbac, Khalid Akhazzane, Mohamed Chelouati, Tarik Nafidi, Hiba-Allah Farid, Khallouki Bourhia, Mohammed Bari, Amina Evid Based Complement Alternat Med Research Article Juniperus thurifera is a native species to the mountains of the western Mediterranean region. It is used in traditional medicine as a natural treatment against infections. The present study aimed to carry out the chemical analysis and evaluate the antioxidant, antimicrobial, as well as in silico inhibition studies of the essential oils from Juniperus thurifera bark (EOEJT). Chemical characterization of EOEJT was done by gas chromatography (GC-MS). We have performed three antioxidant assays (Reducing power (FRAP), 2, 2-diphenylpicrylhydrazyl (DPPH), and total antioxidant capacity (TAC)) of the EOEJT. We next evaluated the antimicrobial activity against in silico study, which was carried out to help evaluate the inhibitory effect of EOEJT against NADPH oxidase. Results of the GC/MS analysis revealed seven major compounds in EOEJT wherein muurolol (36%) and elemol (26%) were the major components. Moreover, EOEJT possessed interesting antioxidant potential with an IC(50) respectively of 21.25 ± 1.02 μg/mL, 481.02 ± 5.25 μg/mL, and 271 μg EAA/mg in DPPH, FRAP, and total antioxidant capacity systems. Molecular docking of EOEJT in NADPH oxidase active site showed inhibitory activity of α-cadinol and muurolol with a glide score of −6.041 and −5.956 Kcal/mol, respectively. As regards the antibacterial and antifungal capacities, EOEJT was active against all tested bacteria and all fungi, notably, against Escherichia coli K12 with an inhibition diameter of 21 mm and a MIC value of 0.67 mg/mL, as well as against Proteus mirabilis ATCC 29906 with an inhibition diameter of 18.33 ± 1.15 mm and a MIC value of 1.34 mg/mL. A more pronounced effect was recorded for the fungal pathogens Fusarium oxysporum MTCC 9913 with inhibition of 37.44 ± 0.28% and MIC value of 6.45 mg/mL, as well as against Candida albicans ATCC 10231 with an inhibition diameter of 20.33 ± 1.15 mm and a MIC value of 0.67 ± 0.00 mg/mL. Altogether, these results highlight the importance of EOEJT as a source of natural antibacterial and antioxidant drugs to fight clinically important pathogenic strains. Hindawi 2022-09-27 /pmc/articles/PMC9532082/ /pubmed/36204116 http://dx.doi.org/10.1155/2022/6305672 Text en Copyright © 2022 Soufyane Lafraxo et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lafraxo, Soufyane El Moussaoui, Abdelfattah A Bin Jardan, Yousef El Barnossi, Azeddin Chebaibi, Mohamed Baammi, Soukayna Ait Akka, Aziz Chebbac, Khalid Akhazzane, Mohamed Chelouati, Tarik Nafidi, Hiba-Allah Farid, Khallouki Bourhia, Mohammed Bari, Amina GC-MS Profiling, In Vitro Antioxidant, Antimicrobial, and In Silico NADPH Oxidase Inhibition Studies of Essential Oil of Juniperus thurifera Bark |
title | GC-MS Profiling, In Vitro Antioxidant, Antimicrobial, and In Silico NADPH Oxidase Inhibition Studies of Essential Oil of Juniperus thurifera Bark |
title_full | GC-MS Profiling, In Vitro Antioxidant, Antimicrobial, and In Silico NADPH Oxidase Inhibition Studies of Essential Oil of Juniperus thurifera Bark |
title_fullStr | GC-MS Profiling, In Vitro Antioxidant, Antimicrobial, and In Silico NADPH Oxidase Inhibition Studies of Essential Oil of Juniperus thurifera Bark |
title_full_unstemmed | GC-MS Profiling, In Vitro Antioxidant, Antimicrobial, and In Silico NADPH Oxidase Inhibition Studies of Essential Oil of Juniperus thurifera Bark |
title_short | GC-MS Profiling, In Vitro Antioxidant, Antimicrobial, and In Silico NADPH Oxidase Inhibition Studies of Essential Oil of Juniperus thurifera Bark |
title_sort | gc-ms profiling, in vitro antioxidant, antimicrobial, and in silico nadph oxidase inhibition studies of essential oil of juniperus thurifera bark |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532082/ https://www.ncbi.nlm.nih.gov/pubmed/36204116 http://dx.doi.org/10.1155/2022/6305672 |
work_keys_str_mv | AT lafraxosoufyane gcmsprofilinginvitroantioxidantantimicrobialandinsiliconadphoxidaseinhibitionstudiesofessentialoilofjuniperusthuriferabark AT elmoussaouiabdelfattah gcmsprofilinginvitroantioxidantantimicrobialandinsiliconadphoxidaseinhibitionstudiesofessentialoilofjuniperusthuriferabark AT abinjardanyousef gcmsprofilinginvitroantioxidantantimicrobialandinsiliconadphoxidaseinhibitionstudiesofessentialoilofjuniperusthuriferabark AT elbarnossiazeddin gcmsprofilinginvitroantioxidantantimicrobialandinsiliconadphoxidaseinhibitionstudiesofessentialoilofjuniperusthuriferabark AT chebaibimohamed gcmsprofilinginvitroantioxidantantimicrobialandinsiliconadphoxidaseinhibitionstudiesofessentialoilofjuniperusthuriferabark AT baammisoukayna gcmsprofilinginvitroantioxidantantimicrobialandinsiliconadphoxidaseinhibitionstudiesofessentialoilofjuniperusthuriferabark AT aitakkaaziz gcmsprofilinginvitroantioxidantantimicrobialandinsiliconadphoxidaseinhibitionstudiesofessentialoilofjuniperusthuriferabark AT chebbackhalid gcmsprofilinginvitroantioxidantantimicrobialandinsiliconadphoxidaseinhibitionstudiesofessentialoilofjuniperusthuriferabark AT akhazzanemohamed gcmsprofilinginvitroantioxidantantimicrobialandinsiliconadphoxidaseinhibitionstudiesofessentialoilofjuniperusthuriferabark AT chelouatitarik gcmsprofilinginvitroantioxidantantimicrobialandinsiliconadphoxidaseinhibitionstudiesofessentialoilofjuniperusthuriferabark AT nafidihibaallah gcmsprofilinginvitroantioxidantantimicrobialandinsiliconadphoxidaseinhibitionstudiesofessentialoilofjuniperusthuriferabark AT faridkhallouki gcmsprofilinginvitroantioxidantantimicrobialandinsiliconadphoxidaseinhibitionstudiesofessentialoilofjuniperusthuriferabark AT bourhiamohammed gcmsprofilinginvitroantioxidantantimicrobialandinsiliconadphoxidaseinhibitionstudiesofessentialoilofjuniperusthuriferabark AT bariamina gcmsprofilinginvitroantioxidantantimicrobialandinsiliconadphoxidaseinhibitionstudiesofessentialoilofjuniperusthuriferabark |