Cargando…
Oxymatrine Protects Chondrocytes against IL-1β-triggered Apoptosis in Vitro and Inhibits Osteoarthritis in Mice Model
BACKGROUND: Osteoarthritis (OA) is a multifactorial disease with various risk factors, resulting in the degeneration of articular cartilage and whole joints. However, to date, no effective disease-modifying therapy for OA has been developed. Oxymatrine (OMT) is associated with many pharmacological e...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532098/ https://www.ncbi.nlm.nih.gov/pubmed/36204118 http://dx.doi.org/10.1155/2022/2745946 |
Sumario: | BACKGROUND: Osteoarthritis (OA) is a multifactorial disease with various risk factors, resulting in the degeneration of articular cartilage and whole joints. However, to date, no effective disease-modifying therapy for OA has been developed. Oxymatrine (OMT) is associated with many pharmacological effects, including anti-inflammatory, antiapoptotic, and antioxidative properties. However, the role of OMT in OA remains unclear. MATERIALS AND METHODS: An IL-1β-induced chondrocyte model and anterior cruciate ligament transection (ACLT)-induced murine model of OA were constructed. The effect of OMT on chondrocyte viability was assessed using the CCK-8 assay. The protein level was assessed by Western blot analysis, and the apoptosis rate was assessed by flow cytometry in vitro and TUNEL staining in OA model mice. The effect of OMT on the degradation of articular cartilage in ACLT-induced OA mice was assessed by histological analysis. RESULTS: OMT at 0–2 mg/mL showed no conspicuous cytotoxicity on chondrocytes after 24 hours of incubation. OMT at 0.5, 1, and 2 mg/mL inhibited IL-1β-triggered apoptosis, upregulated MMP13, MMP9, and Col X, and upregulated Col II in chondrocytes in vitro. OMT represses the NF-κB signaling cascade in IL-1β-triggered chondrocytes in vitro. In an in vivo study, OMT decreased the apoptosis rate of chondrocytes and exerted a protective effect against the degradation of articular cartilage in ACLT-triggered OA mice. CONCLUSION: OMT plays a protective role against chondrocyte injury induced by IL-1β in vitro or ACLT in vivo. OMT may play a role in chondrocytes during OA by inhibiting NF-κB signaling by decreasing the phosphorylation of p65 and IκB. OMT treatment may be a promising chondroprotective approach to delay OA cartilage progression. |
---|