Cargando…
Calibrating cardiac electrophysiology models using latent Gaussian processes on atrial manifolds
Models of electrical excitation and recovery in the heart have become increasingly detailed, but have yet to be used routinely in the clinical setting to guide personalized intervention in patients. One of the main challenges is calibrating models from the limited measurements that can be made in a...
Autores principales: | Coveney, Sam, Roney, Caroline H., Corrado, Cesare, Wilkinson, Richard D., Oakley, Jeremy E., Niederer, Steven A., Clayton, Richard H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532401/ https://www.ncbi.nlm.nih.gov/pubmed/36195766 http://dx.doi.org/10.1038/s41598-022-20745-z |
Ejemplares similares
-
Bayesian Calibration of Electrophysiology Models Using Restitution Curve Emulators
por: Coveney, Sam, et al.
Publicado: (2021) -
Corrigendum: Bayesian Calibration of Electrophysiology Models Using Restitution Curve Emulators
por: Coveney, Sam, et al.
Publicado: (2021) -
Sensitivity and Uncertainty Analysis of Two Human Atrial Cardiac Cell Models Using Gaussian Process Emulators
por: Coveney, Sam, et al.
Publicado: (2020) -
Atrial conduction velocity mapping: clinical tools, algorithms and approaches for understanding the arrhythmogenic substrate
por: Coveney, Sam, et al.
Publicado: (2022) -
Gaussian bandwidth selection for manifold learning and classification
por: Lindenbaum, Ofir, et al.
Publicado: (2020)