Cargando…
Predicting South Korean adolescents vulnerable to obesity after the COVID-19 pandemic using categorical boosting and shapley additive explanation values: A population-based cross-sectional survey
OBJECTIVE: This study identified factors related to adolescent obesity during the COVID-19 pandemic by using machine learning techniques and developed a model for predicting high-risk obesity groups among South Korean adolescents based on the result. MATERIALS AND METHODS: This study analyzed 50,858...
Autor principal: | Byeon, Haewon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532523/ https://www.ncbi.nlm.nih.gov/pubmed/36210956 http://dx.doi.org/10.3389/fped.2022.955339 |
Ejemplares similares
-
Exploring the risk factors of impaired fasting glucose in middle-aged population living in South Korean communities by using categorical boosting machine
por: Byeon, Haewon
Publicado: (2022) -
Predicting and Analyzing Road Traffic Injury Severity Using Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations
por: Dong, Sheng, et al.
Publicado: (2022) -
An artificial neural network−pharmacokinetic model and its interpretation using Shapley additive explanations
por: Ogami, Chika, et al.
Publicado: (2021) -
Detection of Monkeypox Cases Based on Symptoms Using XGBoost and Shapley Additive Explanations Methods
por: Farzipour, Alireza, et al.
Publicado: (2023) -
The Shapley value: essays in honor of Lloyd S. Shapley
por: Roth, Alvin E
Publicado: (1988)