Cargando…
Recruitment and Differential Firing Patterns of Single Units During Conditioning to a Tone in a Mute Locked-In Human
Single units that are not related to the desired task can become related to the task by conditioning their firing rates. We theorized that, during conditioning of firing rates to a tone, (a) unrelated single units would be recruited to the task; (b) the recruitment would depend on the phase of the t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532552/ https://www.ncbi.nlm.nih.gov/pubmed/36211127 http://dx.doi.org/10.3389/fnhum.2022.864983 |
Sumario: | Single units that are not related to the desired task can become related to the task by conditioning their firing rates. We theorized that, during conditioning of firing rates to a tone, (a) unrelated single units would be recruited to the task; (b) the recruitment would depend on the phase of the task; (c) tones of different frequencies would produce different patterns of single unit recruitment. In our mute locked-in participant, we conditioned single units using tones of different frequencies emitted from a tone generator. The conditioning task had three phases: Listen to the tone for 20 s, then silently sing the tone for 10 s, with a prior control period of resting for 10 s. Twenty single units were recorded simultaneously while feedback of one of the twenty single units was made audible to the mute locked-in participant. The results indicate that (a) some of the non-audible single units were recruited during conditioning, (b) some were recruited differentially depending on the phase of the paradigm (listen, rest, or silent sing), and (c) single unit firing patterns were specific for different tone frequencies such that the tone could be recognized from the pattern of single unit firings. These data are important when conditioning single unit firings in brain-computer interfacing tasks because they provide evidence that increased numbers of previously unrelated single units can be incorporated into the task. This incorporation expands the bandwidth of the recorded single unit population and thus enhances the brain-computer interface. This is the first report of conditioning of single unit firings in a human participant with a brain to computer implant. |
---|