Cargando…
Preparation and characterization of garlic polysaccharide-Zn (II) complexes and their bioactivities as a zinc supplement in Zn-deficient mice
This study explored the potential of garlic polysaccharides (GPs) as a carrier for synthesizing GP-Zn (II) complexes to supplement Zn. According to the response surface analysis, the optimal preparation conditions were: mass ratio of GPs to Zn(2+) 1:0.21, temperature 53 °C, pH 5.9 and time 148.75 mi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532731/ https://www.ncbi.nlm.nih.gov/pubmed/36211731 http://dx.doi.org/10.1016/j.fochx.2022.100361 |
Sumario: | This study explored the potential of garlic polysaccharides (GPs) as a carrier for synthesizing GP-Zn (II) complexes to supplement Zn. According to the response surface analysis, the optimal preparation conditions were: mass ratio of GPs to Zn(2+) 1:0.21, temperature 53 °C, pH 5.9 and time 148.75 min, with the maximum chelation rate of 90.11%. The chelation of GPs and Zn(2+) involved O—H/C—O/O—C—O groups, increased crystallinity and altered absorption peaks of circular dichroism spectra, with a higher thermal stability, particle size and negative zeta potential. Compared with inorganic zinc salts, supplementation of GP-Zn (II) complexes showed enhance zinc supplementation effects in Zn-deficient mice model: increased body weight, organ index and Zn (II) levels in serum and liver, enhanced Superoxidedismutase (SOD) activity and alkaline phosphatase activity, decreased NO content and Malondialdehyde (MDA) content and improved colon and testicular morphology. Therefore, GP-Zn (II) complex can be used as a potential zinc supplement for Zn-deficient individuals. |
---|