Cargando…
Weight interpretation of artificial neural network model for analysis of rice (Oryza sativa L.) with near-infrared spectroscopy
Prediction models for major nutrients of rice were built using near-infrared (NIR) spectral data based on the artificial neural network (ANN). Scientific interpretation of the weight values was proposed and performed to understand the wavenumbers contributing to the prediction of nutrients. NIR spec...
Autores principales: | Son, Seungwoo, Kim, Donghwi, Choul Choi, Myoung, Lee, Joonhee, Kim, Byungjoo, Min Choi, Chang, Kim, Sunghwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532771/ https://www.ncbi.nlm.nih.gov/pubmed/36211751 http://dx.doi.org/10.1016/j.fochx.2022.100430 |
Ejemplares similares
-
Root Response to Drought Stress in Rice (Oryza sativa L.)
por: Kim, Yoonha, et al.
Publicado: (2020) -
Novel infrared puffing: Effect on physicochemical attributes of puffed rice (Oryza sativa L.)
por: Shavandi, Mahdi, et al.
Publicado: (2022) -
Protein profile of rice (Oryza sativa) seeds
por: Yang, Yanhua, et al.
Publicado: (2013) -
Interpretation of Near-Infrared Spectroscopy (NIRS) Signals in Skeletal Muscle
por: Sanni, Adeola A., et al.
Publicado: (2019) -
An Isolated Arthrobacter sp. Enhances Rice (Oryza sativa L.) Plant Growth
por: Chhetri, Geeta, et al.
Publicado: (2022)