Cargando…

A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy

AIMS: Vagus nerve stimulation (VNS) is a neuromodulation therapy for children with drug‐resistant epilepsy (DRE). The efficacy of VNS is heterogeneous. A prediction model is needed to predict the efficacy before implantation. METHODS: We collected data from children with DRE who underwent VNS implan...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Jiayi, Wang, Zhiyan, Cheng, Tungyang, Hu, Yingbing, Qin, Xiaoya, Wang, Wen, Yu, Guojing, Liu, Qingzhu, Ji, Taoyun, Xie, Han, Zha, Daqi, Wang, Shuang, Yang, Zhixian, Liu, Xiaoyan, Cai, Lixin, Jiang, Yuwu, Hao, Hongwei, Wang, Jing, Li, Luming, Wu, Ye
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532924/
https://www.ncbi.nlm.nih.gov/pubmed/35894770
http://dx.doi.org/10.1111/cns.13923
_version_ 1784802228497809408
author Ma, Jiayi
Wang, Zhiyan
Cheng, Tungyang
Hu, Yingbing
Qin, Xiaoya
Wang, Wen
Yu, Guojing
Liu, Qingzhu
Ji, Taoyun
Xie, Han
Zha, Daqi
Wang, Shuang
Yang, Zhixian
Liu, Xiaoyan
Cai, Lixin
Jiang, Yuwu
Hao, Hongwei
Wang, Jing
Li, Luming
Wu, Ye
author_facet Ma, Jiayi
Wang, Zhiyan
Cheng, Tungyang
Hu, Yingbing
Qin, Xiaoya
Wang, Wen
Yu, Guojing
Liu, Qingzhu
Ji, Taoyun
Xie, Han
Zha, Daqi
Wang, Shuang
Yang, Zhixian
Liu, Xiaoyan
Cai, Lixin
Jiang, Yuwu
Hao, Hongwei
Wang, Jing
Li, Luming
Wu, Ye
author_sort Ma, Jiayi
collection PubMed
description AIMS: Vagus nerve stimulation (VNS) is a neuromodulation therapy for children with drug‐resistant epilepsy (DRE). The efficacy of VNS is heterogeneous. A prediction model is needed to predict the efficacy before implantation. METHODS: We collected data from children with DRE who underwent VNS implantation and received regular programming for at least 1 year. Preoperative clinical information and scalp video electroencephalography (EEG) were available in 88 children. Synchronization features, including phase lag index (PLI), weighted phase lag index (wPLI), and phase‐locking value (PLV), were compared between responders and non‐responders. We further adapted a support vector machine (SVM) classifier selected from 25 clinical and 18 synchronization features to build a prediction model for efficacy in a discovery cohort (n = 70) and was tested in an independent validation cohort (n = 18). RESULTS: In the discovery cohort, the average interictal awake PLI in the high beta band was significantly higher in responders than non‐responders (p < 0.05). The SVM classifier generated from integrating both clinical and synchronization features had the best prediction efficacy, demonstrating an accuracy of 75.7%, precision of 80.8% and area under the receiver operating characteristic (AUC) of 0.766 on 10‐fold cross‐validation. In the validation cohort, the prediction model demonstrated an accuracy of 61.1%. CONCLUSION: This study established the first prediction model integrating clinical and baseline synchronization features for preoperative VNS responder screening among children with DRE. With further optimization of the model, we hope to provide an effective and convenient method for identifying responders before VNS implantation.
format Online
Article
Text
id pubmed-9532924
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-95329242022-10-11 A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy Ma, Jiayi Wang, Zhiyan Cheng, Tungyang Hu, Yingbing Qin, Xiaoya Wang, Wen Yu, Guojing Liu, Qingzhu Ji, Taoyun Xie, Han Zha, Daqi Wang, Shuang Yang, Zhixian Liu, Xiaoyan Cai, Lixin Jiang, Yuwu Hao, Hongwei Wang, Jing Li, Luming Wu, Ye CNS Neurosci Ther Original Articles AIMS: Vagus nerve stimulation (VNS) is a neuromodulation therapy for children with drug‐resistant epilepsy (DRE). The efficacy of VNS is heterogeneous. A prediction model is needed to predict the efficacy before implantation. METHODS: We collected data from children with DRE who underwent VNS implantation and received regular programming for at least 1 year. Preoperative clinical information and scalp video electroencephalography (EEG) were available in 88 children. Synchronization features, including phase lag index (PLI), weighted phase lag index (wPLI), and phase‐locking value (PLV), were compared between responders and non‐responders. We further adapted a support vector machine (SVM) classifier selected from 25 clinical and 18 synchronization features to build a prediction model for efficacy in a discovery cohort (n = 70) and was tested in an independent validation cohort (n = 18). RESULTS: In the discovery cohort, the average interictal awake PLI in the high beta band was significantly higher in responders than non‐responders (p < 0.05). The SVM classifier generated from integrating both clinical and synchronization features had the best prediction efficacy, demonstrating an accuracy of 75.7%, precision of 80.8% and area under the receiver operating characteristic (AUC) of 0.766 on 10‐fold cross‐validation. In the validation cohort, the prediction model demonstrated an accuracy of 61.1%. CONCLUSION: This study established the first prediction model integrating clinical and baseline synchronization features for preoperative VNS responder screening among children with DRE. With further optimization of the model, we hope to provide an effective and convenient method for identifying responders before VNS implantation. John Wiley and Sons Inc. 2022-07-27 /pmc/articles/PMC9532924/ /pubmed/35894770 http://dx.doi.org/10.1111/cns.13923 Text en © 2022 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Ma, Jiayi
Wang, Zhiyan
Cheng, Tungyang
Hu, Yingbing
Qin, Xiaoya
Wang, Wen
Yu, Guojing
Liu, Qingzhu
Ji, Taoyun
Xie, Han
Zha, Daqi
Wang, Shuang
Yang, Zhixian
Liu, Xiaoyan
Cai, Lixin
Jiang, Yuwu
Hao, Hongwei
Wang, Jing
Li, Luming
Wu, Ye
A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy
title A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy
title_full A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy
title_fullStr A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy
title_full_unstemmed A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy
title_short A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy
title_sort prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532924/
https://www.ncbi.nlm.nih.gov/pubmed/35894770
http://dx.doi.org/10.1111/cns.13923
work_keys_str_mv AT majiayi apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT wangzhiyan apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT chengtungyang apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT huyingbing apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT qinxiaoya apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT wangwen apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT yuguojing apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT liuqingzhu apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT jitaoyun apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT xiehan apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT zhadaqi apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT wangshuang apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT yangzhixian apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT liuxiaoyan apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT cailixin apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT jiangyuwu apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT haohongwei apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT wangjing apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT liluming apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT wuye apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT majiayi predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT wangzhiyan predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT chengtungyang predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT huyingbing predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT qinxiaoya predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT wangwen predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT yuguojing predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT liuqingzhu predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT jitaoyun predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT xiehan predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT zhadaqi predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT wangshuang predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT yangzhixian predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT liuxiaoyan predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT cailixin predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT jiangyuwu predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT haohongwei predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT wangjing predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT liluming predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy
AT wuye predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy