Cargando…
A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy
AIMS: Vagus nerve stimulation (VNS) is a neuromodulation therapy for children with drug‐resistant epilepsy (DRE). The efficacy of VNS is heterogeneous. A prediction model is needed to predict the efficacy before implantation. METHODS: We collected data from children with DRE who underwent VNS implan...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532924/ https://www.ncbi.nlm.nih.gov/pubmed/35894770 http://dx.doi.org/10.1111/cns.13923 |
_version_ | 1784802228497809408 |
---|---|
author | Ma, Jiayi Wang, Zhiyan Cheng, Tungyang Hu, Yingbing Qin, Xiaoya Wang, Wen Yu, Guojing Liu, Qingzhu Ji, Taoyun Xie, Han Zha, Daqi Wang, Shuang Yang, Zhixian Liu, Xiaoyan Cai, Lixin Jiang, Yuwu Hao, Hongwei Wang, Jing Li, Luming Wu, Ye |
author_facet | Ma, Jiayi Wang, Zhiyan Cheng, Tungyang Hu, Yingbing Qin, Xiaoya Wang, Wen Yu, Guojing Liu, Qingzhu Ji, Taoyun Xie, Han Zha, Daqi Wang, Shuang Yang, Zhixian Liu, Xiaoyan Cai, Lixin Jiang, Yuwu Hao, Hongwei Wang, Jing Li, Luming Wu, Ye |
author_sort | Ma, Jiayi |
collection | PubMed |
description | AIMS: Vagus nerve stimulation (VNS) is a neuromodulation therapy for children with drug‐resistant epilepsy (DRE). The efficacy of VNS is heterogeneous. A prediction model is needed to predict the efficacy before implantation. METHODS: We collected data from children with DRE who underwent VNS implantation and received regular programming for at least 1 year. Preoperative clinical information and scalp video electroencephalography (EEG) were available in 88 children. Synchronization features, including phase lag index (PLI), weighted phase lag index (wPLI), and phase‐locking value (PLV), were compared between responders and non‐responders. We further adapted a support vector machine (SVM) classifier selected from 25 clinical and 18 synchronization features to build a prediction model for efficacy in a discovery cohort (n = 70) and was tested in an independent validation cohort (n = 18). RESULTS: In the discovery cohort, the average interictal awake PLI in the high beta band was significantly higher in responders than non‐responders (p < 0.05). The SVM classifier generated from integrating both clinical and synchronization features had the best prediction efficacy, demonstrating an accuracy of 75.7%, precision of 80.8% and area under the receiver operating characteristic (AUC) of 0.766 on 10‐fold cross‐validation. In the validation cohort, the prediction model demonstrated an accuracy of 61.1%. CONCLUSION: This study established the first prediction model integrating clinical and baseline synchronization features for preoperative VNS responder screening among children with DRE. With further optimization of the model, we hope to provide an effective and convenient method for identifying responders before VNS implantation. |
format | Online Article Text |
id | pubmed-9532924 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95329242022-10-11 A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy Ma, Jiayi Wang, Zhiyan Cheng, Tungyang Hu, Yingbing Qin, Xiaoya Wang, Wen Yu, Guojing Liu, Qingzhu Ji, Taoyun Xie, Han Zha, Daqi Wang, Shuang Yang, Zhixian Liu, Xiaoyan Cai, Lixin Jiang, Yuwu Hao, Hongwei Wang, Jing Li, Luming Wu, Ye CNS Neurosci Ther Original Articles AIMS: Vagus nerve stimulation (VNS) is a neuromodulation therapy for children with drug‐resistant epilepsy (DRE). The efficacy of VNS is heterogeneous. A prediction model is needed to predict the efficacy before implantation. METHODS: We collected data from children with DRE who underwent VNS implantation and received regular programming for at least 1 year. Preoperative clinical information and scalp video electroencephalography (EEG) were available in 88 children. Synchronization features, including phase lag index (PLI), weighted phase lag index (wPLI), and phase‐locking value (PLV), were compared between responders and non‐responders. We further adapted a support vector machine (SVM) classifier selected from 25 clinical and 18 synchronization features to build a prediction model for efficacy in a discovery cohort (n = 70) and was tested in an independent validation cohort (n = 18). RESULTS: In the discovery cohort, the average interictal awake PLI in the high beta band was significantly higher in responders than non‐responders (p < 0.05). The SVM classifier generated from integrating both clinical and synchronization features had the best prediction efficacy, demonstrating an accuracy of 75.7%, precision of 80.8% and area under the receiver operating characteristic (AUC) of 0.766 on 10‐fold cross‐validation. In the validation cohort, the prediction model demonstrated an accuracy of 61.1%. CONCLUSION: This study established the first prediction model integrating clinical and baseline synchronization features for preoperative VNS responder screening among children with DRE. With further optimization of the model, we hope to provide an effective and convenient method for identifying responders before VNS implantation. John Wiley and Sons Inc. 2022-07-27 /pmc/articles/PMC9532924/ /pubmed/35894770 http://dx.doi.org/10.1111/cns.13923 Text en © 2022 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Ma, Jiayi Wang, Zhiyan Cheng, Tungyang Hu, Yingbing Qin, Xiaoya Wang, Wen Yu, Guojing Liu, Qingzhu Ji, Taoyun Xie, Han Zha, Daqi Wang, Shuang Yang, Zhixian Liu, Xiaoyan Cai, Lixin Jiang, Yuwu Hao, Hongwei Wang, Jing Li, Luming Wu, Ye A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy |
title | A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy |
title_full | A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy |
title_fullStr | A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy |
title_full_unstemmed | A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy |
title_short | A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy |
title_sort | prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug‐resistant epilepsy |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532924/ https://www.ncbi.nlm.nih.gov/pubmed/35894770 http://dx.doi.org/10.1111/cns.13923 |
work_keys_str_mv | AT majiayi apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT wangzhiyan apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT chengtungyang apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT huyingbing apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT qinxiaoya apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT wangwen apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT yuguojing apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT liuqingzhu apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT jitaoyun apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT xiehan apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT zhadaqi apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT wangshuang apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT yangzhixian apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT liuxiaoyan apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT cailixin apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT jiangyuwu apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT haohongwei apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT wangjing apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT liluming apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT wuye apredictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT majiayi predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT wangzhiyan predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT chengtungyang predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT huyingbing predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT qinxiaoya predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT wangwen predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT yuguojing predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT liuqingzhu predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT jitaoyun predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT xiehan predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT zhadaqi predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT wangshuang predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT yangzhixian predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT liuxiaoyan predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT cailixin predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT jiangyuwu predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT haohongwei predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT wangjing predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT liluming predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy AT wuye predictionmodelintegratingsynchronizationbiomarkersandclinicalfeaturestoidentifyresponderstovagusnervestimulationamongpediatricpatientswithdrugresistantepilepsy |