Cargando…
Detecting COVID-19 infection status from chest X-ray and CT scan via single transfer learning-driven approach
COVID-19 has caused over 528 million infected cases and over 6.25 million deaths since its outbreak in 2019. The uncontrolled transmission of the SARS-CoV-2 virus has caused human suffering and the death of uncountable people. Despite the continuous effort by the researchers and laboratories, it has...
Autores principales: | Ghose, Partho, Alavi, Muhaddid, Tabassum, Mehnaz, Ashraf Uddin, Md., Biswas, Milon, Mahbub, Kawsher, Gaur, Loveleen, Mallik, Saurav, Zhao, Zhongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533058/ https://www.ncbi.nlm.nih.gov/pubmed/36212141 http://dx.doi.org/10.3389/fgene.2022.980338 |
Ejemplares similares
-
Deep features to detect pulmonary abnormalities in chest X-rays due to infectious diseaseX: Covid-19, pneumonia, and tuberculosis
por: Mahbub, Md. Kawsher, et al.
Publicado: (2022) -
Explanation-Driven Deep Learning Model for Prediction of Brain Tumour Status Using MRI Image Data
por: Gaur, Loveleen, et al.
Publicado: (2022) -
Deep viewing for the identification of Covid-19 infection status from chest X-Ray image using CNN based architecture
por: Ghose, Partho, et al.
Publicado: (2022) -
Auguring Fake Face Images Using Dual Input Convolution Neural Network
por: Bhandari, Mohan, et al.
Publicado: (2022) -
A deep learning approach using effective preprocessing techniques to detect COVID-19 from chest CT-scan and X-ray images
por: Ahamed, Khabir Uddin, et al.
Publicado: (2021)