Cargando…

The chromosome-level genome of Gypsophila paniculata reveals the molecular mechanism of floral development and ethylene insensitivity

Gypsophila paniculata, belonging to the Caryophyllaceae of the Caryophyllales, is one of the most famous worldwide cut flowers. It is commonly used as dried flowers, whereas the underlying mechanism of flower senescence has not yet been addressed. Here, we present a chromosome-scale genome assembly...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Fan, Gao, Yuan, Jin, Chunlian, Wen, Xiaohui, Geng, Huaiting, Cheng, Ying, Qu, Haoyue, Liu, Xing, Feng, Shan, Zhang, Fan, Ruan, Jiwei, Yang, Chunmei, Zhang, Liangsheng, Wang, Jihua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533222/
https://www.ncbi.nlm.nih.gov/pubmed/36204200
http://dx.doi.org/10.1093/hr/uhac176
_version_ 1784802298317242368
author Li, Fan
Gao, Yuan
Jin, Chunlian
Wen, Xiaohui
Geng, Huaiting
Cheng, Ying
Qu, Haoyue
Liu, Xing
Feng, Shan
Zhang, Fan
Ruan, Jiwei
Yang, Chunmei
Zhang, Liangsheng
Wang, Jihua
author_facet Li, Fan
Gao, Yuan
Jin, Chunlian
Wen, Xiaohui
Geng, Huaiting
Cheng, Ying
Qu, Haoyue
Liu, Xing
Feng, Shan
Zhang, Fan
Ruan, Jiwei
Yang, Chunmei
Zhang, Liangsheng
Wang, Jihua
author_sort Li, Fan
collection PubMed
description Gypsophila paniculata, belonging to the Caryophyllaceae of the Caryophyllales, is one of the most famous worldwide cut flowers. It is commonly used as dried flowers, whereas the underlying mechanism of flower senescence has not yet been addressed. Here, we present a chromosome-scale genome assembly for G. paniculata with a total size of 749.58 Mb. Whole-genome duplication signatures unveil two major duplication events in its evolutionary history: an ancient one occurring before the divergence of Caryophyllaceae and a more recent one shared with Dianthus caryophyllus. The integrative analyses combining genomic and transcriptomic data reveal the mechanisms regulating floral development and ethylene response of G. paniculata. The reduction of AGAMOUS expression probably caused by sequence polymorphism and the mutation in miR172 binding site of PETALOSA are associated with the double flower formation in G. paniculata. The low expression of ETHYLENE RESPONSE SENSOR (ERS) and the reduction of downstream ETHYLENE RESPONSE FACTOR (ERF) gene copy number collectively lead to the ethylene insensitivity of G. paniculata, affecting flower senescence and making it capable of making dried flowers. This study provides a cornerstone for understanding the underlying principles governing floral development and flower senescence, which could accelerate the molecular breeding of the Caryophyllaceae species.
format Online
Article
Text
id pubmed-9533222
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-95332222022-10-05 The chromosome-level genome of Gypsophila paniculata reveals the molecular mechanism of floral development and ethylene insensitivity Li, Fan Gao, Yuan Jin, Chunlian Wen, Xiaohui Geng, Huaiting Cheng, Ying Qu, Haoyue Liu, Xing Feng, Shan Zhang, Fan Ruan, Jiwei Yang, Chunmei Zhang, Liangsheng Wang, Jihua Hortic Res Article Gypsophila paniculata, belonging to the Caryophyllaceae of the Caryophyllales, is one of the most famous worldwide cut flowers. It is commonly used as dried flowers, whereas the underlying mechanism of flower senescence has not yet been addressed. Here, we present a chromosome-scale genome assembly for G. paniculata with a total size of 749.58 Mb. Whole-genome duplication signatures unveil two major duplication events in its evolutionary history: an ancient one occurring before the divergence of Caryophyllaceae and a more recent one shared with Dianthus caryophyllus. The integrative analyses combining genomic and transcriptomic data reveal the mechanisms regulating floral development and ethylene response of G. paniculata. The reduction of AGAMOUS expression probably caused by sequence polymorphism and the mutation in miR172 binding site of PETALOSA are associated with the double flower formation in G. paniculata. The low expression of ETHYLENE RESPONSE SENSOR (ERS) and the reduction of downstream ETHYLENE RESPONSE FACTOR (ERF) gene copy number collectively lead to the ethylene insensitivity of G. paniculata, affecting flower senescence and making it capable of making dried flowers. This study provides a cornerstone for understanding the underlying principles governing floral development and flower senescence, which could accelerate the molecular breeding of the Caryophyllaceae species. Oxford University Press 2022-08-24 /pmc/articles/PMC9533222/ /pubmed/36204200 http://dx.doi.org/10.1093/hr/uhac176 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Nanjing Agricultural University. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Article
Li, Fan
Gao, Yuan
Jin, Chunlian
Wen, Xiaohui
Geng, Huaiting
Cheng, Ying
Qu, Haoyue
Liu, Xing
Feng, Shan
Zhang, Fan
Ruan, Jiwei
Yang, Chunmei
Zhang, Liangsheng
Wang, Jihua
The chromosome-level genome of Gypsophila paniculata reveals the molecular mechanism of floral development and ethylene insensitivity
title The chromosome-level genome of Gypsophila paniculata reveals the molecular mechanism of floral development and ethylene insensitivity
title_full The chromosome-level genome of Gypsophila paniculata reveals the molecular mechanism of floral development and ethylene insensitivity
title_fullStr The chromosome-level genome of Gypsophila paniculata reveals the molecular mechanism of floral development and ethylene insensitivity
title_full_unstemmed The chromosome-level genome of Gypsophila paniculata reveals the molecular mechanism of floral development and ethylene insensitivity
title_short The chromosome-level genome of Gypsophila paniculata reveals the molecular mechanism of floral development and ethylene insensitivity
title_sort chromosome-level genome of gypsophila paniculata reveals the molecular mechanism of floral development and ethylene insensitivity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533222/
https://www.ncbi.nlm.nih.gov/pubmed/36204200
http://dx.doi.org/10.1093/hr/uhac176
work_keys_str_mv AT lifan thechromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT gaoyuan thechromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT jinchunlian thechromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT wenxiaohui thechromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT genghuaiting thechromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT chengying thechromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT quhaoyue thechromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT liuxing thechromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT fengshan thechromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT zhangfan thechromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT ruanjiwei thechromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT yangchunmei thechromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT zhangliangsheng thechromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT wangjihua thechromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT lifan chromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT gaoyuan chromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT jinchunlian chromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT wenxiaohui chromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT genghuaiting chromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT chengying chromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT quhaoyue chromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT liuxing chromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT fengshan chromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT zhangfan chromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT ruanjiwei chromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT yangchunmei chromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT zhangliangsheng chromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity
AT wangjihua chromosomelevelgenomeofgypsophilapaniculatarevealsthemolecularmechanismoffloraldevelopmentandethyleneinsensitivity