Cargando…
A Keyword-Enhanced Approach to Handle Class Imbalance in Clinical Text Classification
Recent applications of deep learning have shown promising results for classifying unstructured text in the healthcare domain. However, the reliability of models in production settings has been hindered by imbalanced data sets in which a small subset of the classes dominate. In the absence of adequat...
Autores principales: | Blanchard, Andrew E., Gao, Shang, Yoon, Hong-Jun, Christian, J. Blair, Durbin, Eric B., Wu, Xiao-Cheng, Stroup, Antoinette, Doherty, Jennifer, Schwartz, Stephen M., Wiggins, Charles, Coyle, Linda, Penberthy, Lynne, Tourassi, Georgia D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533247/ https://www.ncbi.nlm.nih.gov/pubmed/35020599 http://dx.doi.org/10.1109/JBHI.2022.3141976 |
Ejemplares similares
-
Using ensembles and distillation to optimize the deployment of deep learning models for the classification of electronic cancer pathology reports
por: De Angeli, Kevin, et al.
Publicado: (2022) -
Deep active learning for classifying cancer pathology reports
por: De Angeli, Kevin, et al.
Publicado: (2021) -
Automatic information extraction from childhood cancer pathology reports
por: Yoon, Hong-Jun, et al.
Publicado: (2022) -
Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks
por: Alawad, Mohammed, et al.
Publicado: (2019) -
Using case-level context to classify cancer pathology reports
por: Gao, Shang, et al.
Publicado: (2020)