Cargando…
Multi-task learning-based feature selection and classification models for glioblastoma and solitary brain metastases
PURPOSE: To investigate the diagnostic performance of feature selection via a multi-task learning model in distinguishing primary glioblastoma from solitary brain metastases. METHOD: The study involved 187 patients diagnosed at Xiangya Hospital, Yunnan Provincial Cancer Hospital, and Southern Cancer...
Autores principales: | Huang, Ya, Huang, Shan, Liu, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533336/ https://www.ncbi.nlm.nih.gov/pubmed/36212457 http://dx.doi.org/10.3389/fonc.2022.1000471 |
Ejemplares similares
-
Comparison of Intraoperative Ultrasound B-Mode and Strain Elastography for the Differentiation of Glioblastomas From Solitary Brain Metastases. An Automated Deep Learning Approach for Image Analysis
por: Cepeda, Santiago, et al.
Publicado: (2021) -
Exploratory Analysis of Qualitative MR Imaging Features for the Differentiation of Glioblastoma and Brain Metastases
por: Meier, Raphael, et al.
Publicado: (2020) -
A Deep Multi-Task Learning Framework for Brain Tumor Segmentation
por: Huang, He, et al.
Publicado: (2021) -
An Integrated Radiomics Model Incorporating Diffusion-Weighted Imaging and (18)F-FDG PET Imaging Improves the Performance of Differentiating Glioblastoma From Solitary Brain Metastases
por: Zhang, Liqiang, et al.
Publicado: (2021) -
Physiological MRI Biomarkers in the Differentiation Between Glioblastomas and Solitary Brain Metastases
por: Heynold, Elisabeth, et al.
Publicado: (2021)