Cargando…
Prognosis of lasso-like penalized Cox models with tumor profiling improves prediction over clinical data alone and benefits from bi-dimensional pre-screening
BACKGROUND: Prediction of patient survival from tumor molecular ‘-omics’ data is a key step toward personalized medicine. Cox models performed on RNA profiling datasets are popular for clinical outcome predictions. But these models are applied in the context of “high dimension”, as the number p of c...
Autores principales: | Jardillier, Rémy, Koca, Dzenis, Chatelain, Florent, Guyon, Laurent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533541/ https://www.ncbi.nlm.nih.gov/pubmed/36199072 http://dx.doi.org/10.1186/s12885-022-10117-1 |
Ejemplares similares
-
Optimal microRNA Sequencing Depth to Predict Cancer Patient Survival with Random Forest and Cox Models
por: Jardillier, Rémy, et al.
Publicado: (2022) -
COL7A1 Expression Improves Prognosis Prediction for Patients with Clear Cell Renal Cell Carcinoma Atop of Stage
por: Koca, Dzenis, et al.
Publicado: (2023) -
The prediction of live weight of hair goats through penalized regression methods: LASSO and adaptive LASSO
por: Akkol, Suna
Publicado: (2018) -
LASSO type penalized spline regression for binary data
por: Mullah, Muhammad Abu Shadeque, et al.
Publicado: (2021) -
Gene set selection via LASSO penalized regression (SLPR)
por: Frost, H. Robert, et al.
Publicado: (2017)