Cargando…
BLNIMDA: identifying miRNA-disease associations based on weighted bi-level network
BACKGROUND: MicroRNAs (miRNAs) have been confirmed to be inextricably linked to the emergence of human complex diseases. The identification of the disease-related miRNAs has gradually become a routine way to unveil the genetic mechanisms of examined disorders. METHODS: In this study, a method BLNIMD...
Autores principales: | Shang, Junliang, Yang, Yi, Li, Feng, Guan, Boxin, Liu, Jin-Xing, Sun, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533620/ https://www.ncbi.nlm.nih.gov/pubmed/36199016 http://dx.doi.org/10.1186/s12864-022-08908-8 |
Ejemplares similares
-
TLNPMD: Prediction of miRNA-Disease Associations Based on miRNA-Drug-Disease Three-Layer Heterogeneous Network
por: Yang, Yi, et al.
Publicado: (2022) -
Weighted miRNA co-expression networks analysis identifies circulating miRNA predicting overall survival in hepatocellular carcinoma patients
por: Pascut, Devis, et al.
Publicado: (2020) -
Network embedding framework for driver gene discovery by combining functional and structural information
por: Chu, Xin, et al.
Publicado: (2023) -
Multi-Objective Artificial Bee Colony Algorithm Based on Scale-Free Network for Epistasis Detection
por: Gu, Yijun, et al.
Publicado: (2022) -
Identification and Validation of miRNA-TF-mRNA Regulatory Networks in Uterine Fibroids
por: Peng, Xiaotong, et al.
Publicado: (2022)