Cargando…
Two-step machine learning to diagnose and predict involvement of lungs in COVID-19 and pneumonia using CT radiomics
OBJECTIVE: To develop a two-step machine learning (ML) based model to diagnose and predict involvement of lungs in COVID-19 and non COVID-19 pneumonia patients using CT chest radiomic features. METHODS: Three hundred CT scans (3-classes: 100 COVID-19, 100 pneumonia, and 100 healthy subjects) were en...
Autores principales: | Moradi Khaniabadi, Pegah, Bouchareb, Yassine, Al-Dhuhli, Humoud, Shiri, Isaac, Al-Kindi, Faiza, Moradi Khaniabadi, Bita, Zaidi, Habib, Rahmim, Arman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533634/ https://www.ncbi.nlm.nih.gov/pubmed/36215849 http://dx.doi.org/10.1016/j.compbiomed.2022.106165 |
Ejemplares similares
-
A NOVEL DIAGNOSIS AND SEVERITY PREDICTION ML-BASED MODEL: APPLICATION TO THE IDENTIFICATION AND PREDICTION OF COVID-19 FROM CT RADIOMIC FEATURES
por: Khaniabadi, Pegah Moradi, et al.
Publicado: (2022) -
Artificial intelligence-driven assessment of radiological images for COVID-19
por: Bouchareb, Yassine, et al.
Publicado: (2021) -
Medical imaging modalities using nanoprobes for cancer diagnosis: A literature review on recent findings
por: Shahbazi-Gahrouei, Daryoush, et al.
Publicado: (2019) -
Magnetic Iron Oxide Nanoparticles as T(2) MR Imaging Contrast Agent for Detection of Breast Cancer (MCF-7) Cell
por: Moradi Khaniabadi, Pegah, et al.
Publicado: (2017) -
In vitro Study of SPIONs-C595 as Molecular Imaging Probe for Specific Breast Cancer (MCF-7) Cells Detection
por: Khaniabadi, Pegah Moradi, et al.
Publicado: (2017)