Cargando…
Faster and lower-dose X-ray reflectivity measurements enabled by physics-informed modeling and artificial intelligence co-refinement
An approach is presented for analysis of real-time X-ray reflectivity (XRR) process data not just as a function of the magnitude of the reciprocal-space vector q, as is commonly done, but as a function of both q and time. The real-space structures extracted from the XRR curves are restricted to be s...
Autores principales: | Mareček, David, Oberreiter, Julian, Nelson, Andrew, Kowarik, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533750/ https://www.ncbi.nlm.nih.gov/pubmed/36249496 http://dx.doi.org/10.1107/S2053273322008051 |
Ejemplares similares
-
Artificial intelligence—refinement and possibilities
por: The Lancet Haematology
Publicado: (2022) -
Application of normal-mode refinement to X-ray crystal structures at the lower resolution limit
por: Ni, Fengyun, et al.
Publicado: (2009) -
AI-CenterNet CXR: An artificial intelligence (AI) enabled system for localization and classification of chest X-ray disease
por: Albahli, Saleh, et al.
Publicado: (2022) -
Artificial Intelligence Tools for Refining Lung Cancer Screening
por: Espinoza, J. Luis, et al.
Publicado: (2020) -
Artificial Intelligence for Early Detection of Chest Nodules in X-ray Images
por: Chiu, Hwa-Yen, et al.
Publicado: (2022)